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1 Overview

In the past decade, there has been a great deal of progress in the area of nonlinear
games under both full and partial observations (i.e. both state feedback and measurement
feedback). These advances have been motivated in part by applications to robust/H-
infinity control and estimation, but have obvious application in the area of command and
control due to the adversarial aspects of the battlefield. The area of control of stochastic
processes is more well-developed, and also has obvious applications in command and
control due to the random components of a conflict. The planned experiments will make
use of these techniques with the goal of proving (or disproving) the advantages that would
be obtained if these techniques were employed. Members of the NCSU team are at the
forefront of these areas, and so have unique capabilities to develop such technologies and
experiments.

Although it seems obvious that the modeling of the enemy activities as controlled by
an intelligent, antagonistic player would lead to better command and control decisions,
there are a number of mitigating factors. In particular, there are a number of simplifying
assumptions and sub-optimal techniques which must be employed in order to make the
problem computationally tractable. The question is then whether the advantages are still
significant under these conditions. It is this team’s belief that these will be evident in
real-world applications as well as in simulations that reasonably model the opponent’s
command decisions, but this needs to be proven. (Here we are using “proven”, not in
the rigorous mathematical sense, but in the sense of being reasonably demonstrable via
multiple simulations.)

As alluded to above, an obvious difficulty with the application of advanced techniques
is the possible computational burden. One approach to the reduction of this burden is the
use of hierarchical decompositions of the problem. Techniques for such decomposition in
agile manufacturing applications have also undergone significant development in the last
decade (and as above, members of the NCSU team have been at the forefront of this).
Although these techniques have largely been developed in the context of deterministic
and stochastic models, we have expanded these to the (stochastic) game context discussed
above.

An important component of higher level military operations is resource (such as air-
craft) allocation. Activities such as distribution and re-distribution of resources among
a number of geographical regions can be naturally modeled as a discrete-time Markov
decision process (MDP). A major advantage of the MDP model lies in its capability to
capture events evolving in a discrete fashion. The drawback of such model, however, it
its inherent large dimensionality. We attack this problem using a recent development on
singular perturbations of finite-state Markov chains. In military control operations, it
is common that some variables change more rapidly than other variables. This leads to
time scale decomposition. The concept used in attacking the MPD problem is to make
use of time scales to classify the states into several groups such that the MDP jumps more
frequently within a group and less frequently among groups.



At the lowest level, some minimal cost aircraft routes to the eventual targets are
mapped out. Some inverse Lyapunov techniques as well as optimization approaches are
used for rapid generation of these routes. These routes are then used to determine SAM
sites (possibly decoys) that are unavoidable. One then employs a discrete stochastic game
problem formulation to determine which of these SAMs should optimally be engaged, and
by what series of aircraft operations. Since this is a game model, the optimal opponent
strategy is also determined. Assuming perfect knowledge of the state of the system,
one obtains these optimal stratgies (for both sides), via dynamic programming methods.
The NCSU team uses an exit cost criterion; that is, the game solution is solved all the
way to the various end states. Some technical shortcuts are used to allow us to obtain
this solution. Obtaining the complete solution to the problems at the lowest level in
the hierarchy is superior to the rolling horizon (euphemistally referred to as the model
predictive control) approach for obvious reasons. Further, it allows us to run Monte
Carlo simulations with optimal controls and produce plots of the expected outcome and
its variance as functions of various parameters. This alows the commander to quickly,
visually see when the situation is nearing a point where the optimal strategy makes a
sudden jump. (This will be shown below.)

Much of the work done on C?for Air Operations has assumed perfect knowledge of the
state of the system (battle). However, it is well known that the “fog of war” is a major
aspect of most conflicts. Consequently, the NCSU team has recently been addressing
the problem of control under imperfect, and even misleading information. This involves
formulation of the problem as a stochastic game under partial information. This is a
problem which is at the edge of current understanding in the field of control. We make use
of an approach which is optimal under limited conditions, and have shown that it leads
to significantly better results than the standard techniques (such as extended Kalman
filtering).

Summarizing, we apply the following techniques:

Robust/Game-Theoretic Control (with stochastic components)

Robust/Game-Theoretic Estimation (and the combined estimation/control prob-
lem)

Hierarchical Decomposition Methods

Inverse Lyapunov Techniques

Dynamic Programming.

In Section 2, we consider our underlying “small” stochastic game problem involving
only a few aircraft, a handful of SAMs and a target. The solution of the problem at
this level underlies the solution of larger problems at higher levels. Consequently, a good
deal of work was devoted to a solid understanding of this problem. The analysis and



results are described in detail in the various subsections. In order for the aircraft to
reach their destinations, and also as a means for flagging potential threats en route which
may need to be dealt with, one needs a tool for generating reasonable aircraft routes.
This is discussed in section 3. Once one has solved the above small games, one needs to
enlarge the view to much more substantial problems in terms of the number of entities
(on both sides) involved. This is done via a hierarchical technique, and a discussion of
this technique appears in Section 4. Now, all of the above assumes perfect knowledge of
the system. The consequences of partial, imperfect and corrupted information are studied
in Section 5. In that section, both the estimation problem, and the problem of control
under imperfect information (in the presence of an adversary) are discussed. Section 6
discusses a study of filtering at a higher level in the hierarchy. Lastly, Section 7 moves
the discussion to yet a higher level where a commander may be attempting to determine
which control technique (of many being offered) to employ. The choice may depend on the
situation, and one may even consider a switching meta-controller which chooses between
different control algorithms depending on the current state.

2 Solution of Stochastic Games for C?

This section deals with the lowest level, where the problem has been reduced to a small
stochastic game involving only a few entities. (In the results to appear inthis section,
there are only two aircraft, three SAMs and an enemy target; in the newer software for
the imperfect information case (Section 5), we have increased this to include at least six
SAMs and two targets as well as decoys. Even that problem size could easily be doubled
with today’s available computational power, this study was meant only as a demonstration
of approach, and so no such effort was made. Note also that as indicated above, we use
the hierarchical technique to deal with the full scale problem - doubling problem size at
each increasing level of the hierarchy.)

The objects which will be of interest in this section are aircraft (belonging to what will
be termed the “blue” player), SAMs (belonging to the “red” player), and strategic targets
(belonging to red). The usage of blue and red desigantions will be assumed throughout
the document.

We will reduce the state of the i (blue) aircraft at time ¢ to a pair, YA(t) =
(DA(t), XA (t)) where D' will represent the health status of the aircraft, and X will
represent its position. Note that since the scope of the C? problem is large, we will not
model the dynamics of each aircraft in detail; we will not include velocity, attitude, mass
and so forth as part of the state. When the problem is decomposed into separate sub-
problems below, we will abuse notation in the sense that in one subproblem, X/ will
represent a position taking continuous values in R?, while for the other subproblem this
will indicate position among a discrete set of alternatives; the meaning will be completely

obvious by context. We will suppose that the health status take values in the discrete set



{1,2,3,4} where 1 represents healthy, 2 and 3 represent various levels of damage (or need
of maintenance), and 4 indicates that the aircraft has been destroyed.

We will assume similar state models for the SAMs. The " SAM state will be rep-
resented by the pair Y;R(t) = (D (t), X/(t)) where DF will represent the health status
of the SAM, and X will represent its position. (Note that there exist both mobile and
fixed-site SAMs.) Similar comments as those above can be made with regard to X%, As
for the health status of the SAMs, we let D[ take values in {1,2,3} where 1 represents
healthy, 2 represents damage (or need of maintenance), and 3 indicates that the SAM
has been destroyed (not repairable). Lastly, we will take a similar model for the strategic
targets, where the pair will be denoted as Y;'(t) = (D] (t), X/ (t)) with D!'(t) € {1,2, 3},
where 1, 2 and 3 will have the same meaning as for the SAMs. Let the number of blue
aircraft be N4, the number of red SAMs be Ng, and the number of red strategic targets
be Np. Let Y4 = {YA}Na YR = [yRWNE and YT = {YT}¥1. Throughout, we will
use the convention of uppercase letters for the state processes and lowercase for values
that the state process may take on, that is, ?A(t) = ¢/ indicates that the aircraft state
process has the value 4 at time t.

The objective is not clearly defined in a mathematical sense. For blue, it may some-
times be to destroy a strategic target while minimizing damage to the aircraft; in other
situations it may be more general attrition of both SAMs and targets. In order to sim-
plify matters, we will assume here that both players are using the same objective function.
That is, blue is trying to minimize the worst case (maximum) payoff, and red is trying to
maximize their worst case (minimum) of the same payoff. The time-horizon over which
these objectives should be met is not fixed. We choose to consider an exit cost, without
running cost terms. Let 7 be the exit time. We define the exit time to be the time
when either: 1) all the blue aircraft have been destroyed or 2) the red strategic target(s)
has(have) been destroyed and the surviving blue aircraft have returned to base. We let
the set of states satisfying one of the exit conditions be denoted by £. In order to capture
the objective in a reasonably simple payoff function, one can consider, for instance, a
linear payoff with parameters which can be varied depending on the value of the assets
such as

Ny Ngr Nt
(i, g i) = pa [Z diA] — MR [Z d,R] — pir [Z dZT] (1)
i=1 i=1 i=1

where 4, jug, pr are the parameters. The presence of the expectation in the above equa-
tion is due to the fact that the dynamics of the health status of the objects will involve
random outcomes of engagements and maintenance.

The next two subsections describe the mathematics behind the algorithm. The reader
interested primarily in the application of the algorithm, and its advantages should proceed
to Subsection 2.3.



2.1 Discrete Stochastic Game

We consider the problem where a single strategic target is selected, and an approximate
path from the blue base to that target has been generated. As discussed above, there may
be one or more SAM sites intervening along this path. At this level, the positional dynam-
ics will be specified only in a general way. Let the SAMs be indexed as {1,2,3, ..., Ng}.
Let the aircraft position take values in the set £ = {B,1,2,3,..., Ng, Ngp + 1} where B
indicates the (blue) base and Ng + 1 indicates the (red) strategic target. We suppose a
discrete time model where each time step occurs only when either an aircraft engages a
SAM, an aircraft engages the target, or an aircraft returns to base. More than one such
activity can occur at each step. The aircraft control for each aircraft, U(t), must be spec-
ified at each time step. The set of possible values is Y = LU {0} where numbers between
U? =1 and U = Ni + 1 indicate attack the corresponding red SAM or target, U = B
indicates return to base, and U* = 0 indicates “do nothing”. Note that the dynamics of
the motion is simply X (¢t + 1) = U2 () when U2 (t) # 0 and XA(t + 1) = X/(¢) when
UA(t) = 0. We place some restrictions on the allowable controls. The control actions will
be organized into cycles of length, n.. That is, each cycle will consist of n. time steps.
At the start of each cycle, all aircraft must be at the base. Consequently, we require
UA(t) = B for all i < Ny and all t = kn, — 1 for all k > 1. We also require that for any
t=kn,—1

if there exists i such that X:}(t) = B and D{(t) = 1, then there must be a k < N, with
Di\(t) # 4 such that U(t) # B.

(CC)
Note that this last requirement forces at least some aircraft to engage red during each
cycle for which there is a fully healthy aircraft.

It will be assumed for this subproblem that the SAMs cannot move during the duration
of the game. The controls for the i SAM at (discrete) time ¢ is GF(t), taking values
in {0,1} where 0 indicates radar on and 1 indicates radar off. As mentioned in the
introduction, when the radar is on, the probability of the SAM inflicting damage on the
aircraft rises - as does the probabilty that the aircraft can inflict damage on the SAM.

The health status of each of the objects will transition according to a discrete-time
Markov chain model. The transisiton probabilities will be state/control dependent. To
simplify matters, assume that multiple aircraft can attack a single SAM, but that the
aircraft need only engage one SAM at a time. At each time-step, where a SAM is under
attack, we let the transition probabilty be given by the matrices PR, pE02 PRIl 5nd
P12 indicating the transition probabilities for the cases where a SAM with radar off is
being attacked by a single aircraft, a SAM with radar off is being attacked by multiple
aircraft simultaneously, a SAM with radar on is being attacked by a single aircraft, and
a SAM with radar on is being attacked by multiple aircraft simultaneously, respectively.
Of course, there are many more possibilities, but we consider only these for simplicity.
If a SAM radar is on, and the SAM is not under attack during that time step, then we



assume the SAM health status remains constant with probability one. Lastly, if a SAM
site is off and not under attack, the health may improve through maintenance, with a
tranistion probability given by PR%. The state d* = 3 will be an absorbing state for
all the transistion matrices. In particular, maintenance cannot repair a SAM once it has
entered state 3. The transition probabilities for the red target are the same as those for
a SAM with radar off.

Let the corresponding probabilities for the aircraft during engagement be given by
pAOL pA02 - pALL and PA12 where these stand for the same situations as those indicated
for the SAMs above. We assume that the probability of transitioning to state 4 (down) is
nonzero for all of the above matrices (i.e. that the last columns have no zero entries). We
also allow the aircraft to undergo maintenance while at the base (U/(t) = B), and let the
transition probabilities be PA%. For the aircraft, one must also consider the possibility
of damage due to flying over SAMs with radars that are on while enroute from one point
to the next. For instance, if X(t) = 1 and XA(t + 1) = UA(t) = 3, and if SAMs 2 and
4 are between 1 and 3, then aircraft ¢ could suffer damage while flying over each of the
SAMs 2 and 4 — if they are on. We let the transition probability for aircraft health due
to flying over a SAM that is on (Gf(t) = 1) and not destroyed (Df(t) # 3) be P*'*
for each SAM that is flown over. In the above example, if SAM 3 is on and aircraft i
is the only one attacking, then its transition probability for this time step is given by
PALE pALF pALL T astly, the destroyed /down state will be absorbing for all the transition
matrices including P40,

Here we will consider a simplified information pattern that is chosen to mimic the real
world situation in a rather loose way. Specifically, we will consider the game where at
each time step blue chooses its control given the current state, and then red chooses its
control given the current state plus the control choice for blue at the current time. In
other words, we are interested here in an upper value (recall blue is minimizing and red
maximizing). Let the value function for this game be denoted by V (¢4, 7%, ). Since it
is quite standard, we do not include a proof of the DPE (dynamic programming equation)
which is given as follows.

Theorem 2.1 The value function satisfies

V (ng g% ") = min max
R N N
wAeuUNA gRe{0,1}VR

B{v(F4(1), 740, ¥ (1)
740 = 7 740 = 70 = .}

- . a4, gk >A —R ST
—mnel&r%u g‘Re%?l);NRg [V](y SR )

We will now indicate how this value function can be obtained through repeated apppli-
cation of the backward dynamic programming operator. First however, we will need the



following lemma which essentially implies that there is a positive probability of reaching
the absorbing states in a fixed number of steps.

Lemma 2.2 There exists n < oo and 0 > 0 such that for any sequence of controls for
blue and red

P{ (VA +n), VRt +n), VT(t+n)) € &
| (VA0 V), YT(1) = (7, 5%, 97)| = 0

for any (74, 7%, §7) where we recall € was the exit set.

PROOF. Lett; = min{s > ¢: s = kn.+1 for some nonnegative integerk}. Then, by
condition (CC), there exists i; < N4 such that X/}(¢,) # B, and consequently, there exists
&1 > 0 (dependent on the choice of transition matrices) such that P(D;!(t;) = 4) > §;. Let
Q1 C Q (the sampls space) be given by O = {w € Q: D (t;) = 4}. For points in 4 such
that (YA(t,), YE(t1),YT(,)) & € (where not all the aircraft are down), let #, = min{s >
t; : s = kn. + 1 for some nonnegative integer k}. Then again by condition (CC), there
exists io < N4 such that X7 (¢,) # B, and consequently, P({w € Q : D (ty) = 4}) > 41.
Since state 4 is absorbing, This implies that P(D;}(t) = 4, D{(t) = 4) > 67 for all t > ¢,.
Proceeding inductively, one finds that by, at most, time ¢ + n.N,, the state is in E with
probability no less than 614,

Define the backward dynamic programming (DP) algortihm as follows. Let the ter-
minal value be

W(O g’A g’R gT) - { \P(gAa ZjRa ?jT) if (?jA7 g‘R, ZjT) S
T 0 otherwise.

(We remark that the choice of 0 is irrelevant.) Given W (k,-), one computes W (k — 1, -)
by the backward dynamic programming operator given by

Wk —1,7* 9% ¢") = min max
( vy ) aAeuUNA gRe{0,1}VR

E{W(k, VA1), VR(1), ¥7(1))

—

740 = 7 7 0) = 70 = 7.

= min  max G0 [W(k, )G, 7" i)

aAeUNA gRe{0,1}VR

if (74, 9%, 9") ¢ € and W(k — 1§, g%, 5") = (7, 7", ") otherwise.

Lemma 2.3  This backward dynamic programming propagation operator is a contrac-
tion.



PROOF. Once one has Lemma 2.2, the proof of this lemma is a minor variation of
standard results, but in this case for a game with an exit criterion. (See, for instance, [4],
[15] for similar results.) We will simply indicate some of the main points. Let W and W,
be given by the backward DP with possibly different conditions at £ = 0. For simplicity,
use the notation ¢ = (74, 7%, #7). Note that (for k < 0)

Wl(k,?j) _W2(k7?j)
= min  max G T W (k+1,)](%)

aAcuNA gRe{0,1}Vr

— min max QﬁA’gR[Wz(k‘f‘la')](?j)-

dAeuUNA gRe{0,1}VR

Choose uf to be Z-optimal for I¥; and then choose gft to be £-optimal for W, given the
same control u{' as used for W,. Then
Wl (ka ?j) _WZ(ka ?j)
A 2
< GEI Wk + 1,0 = Walk +1,))(8) +

n
Repeating this process, one finds that (for £ < —n) and proper choice of feedback controls,
Wl(ka g\) _WZ(ka g\)
< TLLG™ 3} [Wi(k + n,-) — Walk +n, -)](§) + 2
m=1

where we are using the [] notation to indicate operator composition. Alternatively, one
may write this as

Wi (k, ) — Wk, <Z{W1k+nz)
2
Wl -+, 2] PR{TA Y ARV | + 22

where this last term indicates the probability of transitioning from ¢ to Z' in n steps
given the feedback control processes specified in the arguments. Using symmetry and the
Lemma 2.2, one obtains

|Wl(k7g) _WZ(kag”
< max{|Wi(k +n,2) — Wa(k +n, 2)|}
ZP""{I_[ zla{g )+26
sar
< max{|Wi(k +n,2) — Wa(k +n,2)|}(1 —0) + 2¢.

This then yields

||Wl(kv) _WZ(ka')Hoo
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The proof of convergence is also standard, and so we state the result without proof.

Theorem 2.4 W (k, 74, 7%, ¢7) converges to the value function V (74, 7%, 47) as k | —oo
for all points in the state space.

We remark that since the controls spaces are finite, the controls actually converge in
a finite number of steps.

2.2 Reducing the Computations

The above algorithm for the computation of the value function (and corresponding con-
trol policies) suffers from the curse of dimensionality typical for DP algorithms. Specifi-
cally, notice that computation of G&*9" [W(k,-)]() may require summing the product of
W (k,Z) and Pyij,;’gR over all possible values of 2" for each point 3. More specifically, the
computations for W (k — 1,%) (for each ¢) require O(4V4(Ng + N + 1)N43Vr3N1) oper-
ations, even without optimization over blue and red control policies. We will discuss one
of the methods being used to reduce these computation costs. The method will involve
an approximation of W at each step. The result will be that the computational costs per
v point will be reduced from the above exponential growth in the number of dimensions
to only linear growth in the number of dimensions. This is a tremendous reduction in
computational costs which makes the difference between feasibility and infeasibility of
computation for low-dimensional problems. The growth in the number of points at which
we must evaluate W remains exponential in the number of dimensions of course.

We introduce the following operator which is essentially an approximation operator for
the value function or DP iterates around any given point /. In order to reduce the notation,
we will consider a simplified state space where § = (y1,y9,y3) with y; € {1,2,3,4} and
Y2, y3 € {1,2,3}. This will reduce notation without losing the flavor of the method. Define
the matrices A’ for i = 1,2, 3 given by A, = 1if j = k =i and A}, = 0 otherwise. Then,
given 7/, define the approximation operator for approximation around ¢ by

1

[m} - Yiallz — vl

S

7Y

Y

V) if 7=
The operator is essentially an approximation operator where convex combinations are
used to approximate V' for states which are not directly along a basis direction from the
point around which V' is being approximated. Although we will not discuss the error
analysis here, we note that of course the appropriateness of an approximator of this form
depends critically on the nature of the value function itself which, in turn, depends on



the choice of terminal payoff, ¥. Recall that since the problem is rather loosely defined,
we have great freedom in the choice of ¥. Now, note that the approximation operator is
a nonexpansive map for any . The backward DP operator of the previous section will
now be replaced by the approximate backward DP operator given by

W(k—1,9)= min _max_ G [#[W(k,-)](-)](7)

aAcuUNA gRe{0,1}Vr
if f ¢ & and W(k—1, 1) = ¥(¥) otherwise. Using the nonexpansivity of this approximation

operator and the contraction property of the backward DP, one can obtain the following
result in a straightforward manner similar to that of the previous section.

Theorem 2.5 The approximate backward DP operator is a contraction, and the corre-
sponding iterates converge to a fired point of the operator.

Lastly, we indicate the promised reduction in computation via the approximation.
Recall that each of the transitions is independent. Suppose for this simplified problem
that the transition matrices for vy, ys, y3 are given by P!, P?, P3 respectively, where we
are suppressing the dependence of each P on the states and controls. (Note that in this
simplified problem, we have actually eliminated that position state for the aircraft.) Then
the approximate backward DP takes the form

Wk —1,7) @)
N . - pl 2 3
N aArIelgl%A gReIE)?ﬁNR W DEy 0 P o P

4
+ > Wk, 21,92, 53) Qg Py

z1=1

3
+ Z W(k,yla227y3)Q|2z2—y2|PZ/22,z2

zo=1

3
+ Z W(k, Y1, Y2, 23)Q?z3—y3|P53,z3 (3)

z3=1
where 5 ) 5 ,
EZQ:I |Z2 - y2|Py2,z2 +Ez3:1 |Z3 - y3|Py3,z3
23:1 |zi — vl
with analogous definitions for @7, ~and @}, , . Note that these Q' may be pre-

computed. Thus the approximate DP (3) has only linear growth in the compuations
which must be performed at each step (per point in the state space).

1 -
Q\m—yl\ -
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2.3 Testbed, Monte Carlo Simulation and Landscape Plots

The games controller was tested via Monte Carlo simulation. The first purpose was to
ensure that the game controller was bug-free (it wasn’t). The second was to explore the
structure of the results, and their dependencies on system parameters.

For the first set of tests, a simple geometry was considered. This is depicted in figure
1. A corridor has been determined. The corridor is such that one must pass within
the umbrella of each SAM to get to the next, and finally to the target. The SAMs are
numbered 1 to 3 from bottom to top. When there are less than three SAMs in some of the
tests, that may correspond to any of the SAMs in Figure 1la being missing. (The problem
is mathematically independent of which specific ones are missing in this geometry.)

A number of bugs were found and removed. Most notably, a problem where the
controller was not bookkeeping the number of aircraft acting in tandem properly was
corrected.

It was soon noticed that the most significant feature of the controllers was the choice for
blue of whether to fly-over the SAMs without attacking or to perform a rollback policy
(removing the first, then the second, then the third before the target). Intermediate
policies occurred only for a small range of cases.

Based on feedback from the program office, it was decided to use the Monte Carlo
simulator to look at dependency on certain parameters, and the effect of mismodeling of
those parameters. This study was undertaken with a software package which was referred
to as the Sensitivity Tool. It varied both actual parameters in the simulation and the
corresponding values assumed by the controller. For each such possibility, a Monte Carlo
series was run (generally with approximately 1000-2000 sample games). The results were
plotted in three-dimensional figures where the horizontal axes corresponded to true and
assumed values of various parameters. The Sensitivity Tool and the embedded Monte
Carlo simulator are depicted in Figures 1b and 1c.

It was found that the choice of fly-over or rollback was sensitive to the probability of
damage to a blue aircraft when flying through the SAM umbrella without engaging. Let
this probability be denoted by «. (More specifically, the transition probabilities for the
aircraft are 4 x 4 matrices, and the (1,4),(2,4), (3,4) entries are «, the (1,1),(2,2),(3,3)
entries are 1 — «, the (4,4) is 1, and the rest are zero.) Consequently, Monte Carlo runs
were done where the true value of o and the value the controllers believe to be o were
varied. For most of the runs, both blue and red had the same value of a.. This was done
for computational reasons. A small number of runs were done where red had the true
value, and so only blue had an incorrect value. These verified that the main structure
we will see is due to the blue controller. (The runs where red had the true value will be
discussed later.)
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The Monte Carlo data to follow was made with the following parameter values: For
notation, see the ”pmrmodel” documentation (in ps or pdf format).

pt =20, pf =3, u" =20

pda0 = [1,0,0,0; 0.4,0.6,0,0; 0.3,0,0.7,0; 0,0,0, 1]

pda011 = [0.99,0.00, 0.00,0.01; 0.0, 0.95,0.025, 0.025; 0.0,0.0,0.9,0.1; 0.0, 0.0, 0.0, 1.0]
pda021 = [1.0,0.0,0.0,0.00; 0.00,0.98,0.01, 0.01; 0.00,0.00, 0.96, 0.04; 0.00, 0.00, 0.00, 1.00]
pdalll = [0.82,0.01,0.02,0.15; 0.00,0.82,0.03,0.15; 0.00,0.00, 0.75, 0.25; 0.00, 0.00, 0.00, 1.00]
pdal21 = [0.92,0.01,0.02,0.05; 0.00,0.92,0.03,0.05; 0.00, 0.0, 0.87,0.13; 0.0, 0.0, 0.0, 1.0]
pdadr3 = [0.995, 0.000, 0.00, 0.005; 0.00,0.98,0.01, 0.01; 0.00, 0.00,0.97,0.03; 0.0, 0.0, 0.0, 1.0]
pdfoon = (see above)

pdr0 = [1,0,0; 0.3,0.7,0; 0,0, 1]

pdr011 =[0.7,0.0,0.3; 0.0, 0.6,0.4; 0.0, 0.0, 1.0]

pdr021 = [0.4,0.0,0.6; 0.0,0.35,0.65; 0.0,0.0, 1.0]

pdrill = [0.7,0.0,0.3; 0.0,0.5,0.5; 0.0,0.0, 1.0]

pdr121 =0.3,0.0,0.7; 0.0,0.25,0.75; 0.0,0.0, 1.0]

For the purposes of reader understanding, the output value has been multiplied by —1
and had a constant added so that it takes the form

V=pt3 (=D = p" 3D = 2) — " (DT - 2).

In this case, the minimum value is 0 (rout for blue), and the maximum value is 3u“n 4 +
2ufng +2p7 where ny and ngp are the numbers of aircraft and SAMs. Note that in this
case, larger numbers are better for blue and vice-versa.
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Pic.#1 MC experiment: flyover-risk sensitivity -~ game value
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o
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Actual P
0 ¢ Control P

Fig. 2.3.1

All runs are made with 2000 sample points unless otherwise specified. Each set of
figures takes from 2-16 hours to produce on a typical workstation. The controllers are
computed 11 times (for each «), and 2000 simulation runs are made for each of the 121
points on the graph.

The first set of data is for the case of one aircraft and one SAM site.

e Figure 2.3.1 is the sample mean value.

Figure 2.3.2 is the sample standard deviation.

Figure 2.3.3 is the sample mean number of surviving a/c

Figure 2.3.4 is the sample mean number of surviving SAMs

Figure 2.3.5 is the sample mean number of surviving targets

Figure 2.3.6 is the sample mean number of cycles until the end of the game.

(Recall that the game ends when all the blue a/c are down, or the red target is
destroyed.)
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Sample Standard Deviations of Values
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Pic.#2 MC experiment: flyover-risk sensitivity - game value (s.d.)

0
Actual P 0 Control P
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Pic.#4 MC experiment: flyover-risk sensitivity —- avg. surviving SAMs
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Pic.#5 MC experiment: flyover-risk sensitivity —- avg. surviving targets
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Pic.#6 MC experiment: flyover-risk sensitivity —- avg. game time

average number of cycles

Actual p, 0 0

Control P

Note:

1. The value has two “regions”. In the left region it is roughly linear (over the region),
and in the right region it is constant.

2. The value is monotonically decreasing as a function of the true a.

3. For each line of constant true «, the value takes on its maximum at the same value
of control . (The blue controller effect dominates.)

4. The right side corresponds to rollback, the left to fly-over.

5. The standard deviation for the rollback is higher than that of the fly-over even when
the mean value is lower.

6. The average number of surviving units is constant on the right region.
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Pic.#1 MC experiment: flyover-risk sensitivity -— game value
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Fig. 2.3.7
The second set of data is for the case of two aircraft and one SAM site.

e Higure 2.3.7 is the sample mean value.

Figure 2.3.8 is the sample standard deviation.

Figure 2.3.9 is the sample mean number of surviving a/c

Figure 2.3.10 is the sample mean number of surviving SAMs

Figure 2.3.11 is the sample mean number of surviving targets

Figure 2.3.12 is the sample mean number of cycles until the end of the game.
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Pic.#3 MC experiment: flyover-risk sensitivity -- avg. surviving ACs
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Pic.#4 MC experiment: flyover-risk sensitivity -- avg. surviving SAMs
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Pic.#5 MC experiment: flyover-risk sensitivity -— avg. surviving targets
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Fig. 2.3.11
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Pic.#6 MC experiment: flyover-risk sensitivity —- avg. game time

average number of cycles

0.02

0.02

0 0
Actual P Control P

Note:

1. The value still has two “regions”. In the left region it is roughly linear (over the
region), and in the right region it is constant.

2. The switch-over point from fly-over to rollback is different.

3. The structures of all figures are the same as for the previous data set.

The third set of data is for the case of two aircraft and three SAM sites.

Figure 2.3.13 is the sample mean value.

Figure 2.3.14 is the sample standard deviation.

Figure 2.3.15 is the sample mean number of surviving a/c

Figure 2.3.16 is the sample mean number of surviving SAMs

Figure 2.3.17 is the sample mean number of surviving targets

Figure 2.3.18 is the sample mean number of cycles until the end of the game.
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Pic.#1 MC experiment: flyover-risk sensitivity —— game value
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Pic.#2 MC experiment: flyover-risk sensitivity -—— game value s.d.
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Fig. 2.3.14
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Pic.#4 MC experiment: flyover-risk sensitivity —— avg. surviving SAMs
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Fig. 2.3.16
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Pic.#6 MC experiment: flyover-risk sensitivity —— avg. game time
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Fig. 2.3.18
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Note:

1. The value still has two “regions”. In the left region it is roughly linear (over the
region), and in the right region it is constant. Again the structure is essentially the
same.

2. The data is noisier.
3. The switch-over point from fly-over to rollback is different.

4. A close examination of Figure 2.3.16 (surviving SAMs) indicates that the switch-over
is not quite complete from one control « to the next. A little bit of the switch-over
is not complete until after two steps. Actually, from other runs, we have seen that
there is a reduction from complete fly-over to rollback in several stages, but the
change is so rapid (as this parameter changes) that to a good approximation, it is
a single switching point.

5. Note that in Figure 2.3.13, the value may not quite have its maximum relative to
the line true @ = 0.014 at control o = 0.014. This may represent some small error
due to approximations made in the control computations.
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Blue Base
Geography 2 Di
Fig. 2.3.19

Different Geographies

The controller can deal with more complicated geometries than that of the previous
data sets. We have run it with the geographical distillation depicted in Figure 2.3.19.
The geography is distilled into a file where the red sites whose umbrella must be flown
through in going from site A to site B are recorded. The controller has been tested for
this example geometrie as well. The landscape plots for these geometries are similar to
those above and are not included..
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2.4 Differing SAM lethalities

Previously, there was only one type of SAM in our Small Game Controller and Testbed.
In this subsection, we indicate the changes that were made to allow the SAMs to have
both different effective radii and different lethality (strengths). The possiblity of different
strength SAMs had a significant effect on the shape of the value landscape and the optimal
controls.

The different radii are an off-line matter which is eliminated in the geography distil-
lation file.

The different lethality has been added to both the control software and the Small Game
testbed. In the previous subsection, the optimal Blue strategy was essentially always
either fly-over or rollback. With mutiple SAM strengths, the number of possibilities
increases. With two SAM strengths, there are three control regions for Blue (fly-over,

partial rollback, rollback). See Figures on following pages for an example with two a/c,
two SAMs and a target. The SAMs had different lethalities.
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Pic.#1 MC experiment: flyover-risk sensitivity -~ game value

Sample Value Mean

Actual p, Control p,
k o 0 k

Fig. 2.4.1: Two SAM lethalities, Game Values

An obvious question is whether the two control policy jumps in the previous slide were
due to two SAM strengths or to two SAMs? Figures 2.4.7-2.4.9 are for 2 a/c and 3 SAMs
where SAMs have two strength types. Two SAMs are weaker and one is stronger while
under direct attack; kept fly-over damages same for both types in this example. Note
that there are only TWO policy jumps, thus indicating that the effect is related to the
number of types of SAMs not the number of SAMs.
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Pic.#2 MC experiment: flyover-risk sensitivity —- game value s.d.
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Fig. 2.4.2: Two SAM lethalities, Sample S.D. of Game Values

Pic.#3 MC experiment: flyover-risk sensitivity - avg. surviving A/C
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Fig. 2.4.3: Two SAM lethalities, Average remaining aircraft
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Pic.#4 MC experiment: flyover-risk sensitivity -- avg. surviving SAMs
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Fig. 2.4.4: Two SAM lethalities, Average remaining SAMs

Pic.#5 MC experiment: flyover-risk sensitivity -— avg. surviving targets
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Fig. 2.4.5: Two SAM lethalities, Average remaining Targets
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Pic.#6 MC experiment: flyover-risk sensitivity —- avg. game time
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Fig. 2.4.6: Two SAM lethalities, Average game time (cycles)

The major result here is that one does not need to search over all of a/c control space.
The search appears to be reduced to only n+ 1 (or maybe 2") policies for blue where n is
the number of SAM lethality types. (Differing radii of coverage do not affect this.) This
implies a HUGE computational savings; much larger problems solvable at this low level
in the hierarchy.
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Pic.#3 MC experiment: flyover-risk sensitivity —— avg. surviving A/IC
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Fig. 2.4.7: Two SAM lethalities 3 SAMs, Average remaining aircraft

Pic.#4 MC experiment: flyover-risk sensitivity —— avg. surviving SAMs
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Fig. 2.4.8: Two SAM lethalities 3 SAMs, Average remaining SAMs
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Pic.#5 MC experiment: flyover-risk sensitivity —- avg. surviving targets

Actual p, 0 0
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Fig. 2.4.9: Two SAM lethalities 3 SAMs, Average remaining Targets

2.5 Incorrect Assumptions of System Parameters

In the above subsections, the controllers for both the Blue and the Red players were
computed from the same minimax code under the same assumptions. This yields the
worst-case opponent from the Blue perspective. A modified version of the Small Game
testbed was produced where the controllers do not operate under the same assumptions.
Both the model parameters (transition probabilities) and the payoff functions that each
player uses may differ from that used by the other player.

A small number of results were generated. In the examples from Subsection 2.3, Blue
and Red both assume a value of ur = 3 for the SAMs. (Note: pa = 20, ur = 20.) Here
however, we modify this so that Blue assumes ur = 3, and Red assumes pgr = 20. Results
were plotted according to the Blue payoff function.

The case was for 2 a/c and 2 SAMs. This leads to control lookup tables of approxi-
mately 13,000 lines. The tables used different Red controls in approximately 2,000 lines
(of the 13,000). However, the outcomes were not significantly affected for this pair of
different of assumptions. The new payoff is depicted in Figure 2.5.1, and the difference
between this value and that for the case where both assume pugr = 3 is depicted in Figure
2.5.2. The point is that in this particular example, although many control strategy lines
were changed, the critical lines were not changed.
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Pic.#1 MC experiment: flyover-risk sensitivity -— game value
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Fig. 2.5.1: Red’s pft = 20 (not same as Blue), No. of iterations = 500

Pic.#1 Red and Blue with different plant models -- game value difference
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Fig. 2.5.2: Difference in value functions
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2.6 Observation Delays

We did a small study of the effects of observation delays. For this study, we assumed that
the observations of the state are perfect, but are delayed by some fixed amount of time.
In the experiment, both players experienced the same informational delays. The results

0.16 0.18

in Figures 2.6 are for the case of one aircraft and one SAM.
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Pic.#2 MC experiment: flyover-risk sensitivity —— game value s.d.
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Pic.#5 MC experiment: flyover-risk sensitivity —— avg. surviving targets
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Fig. 2.6.5: Average remaining targets
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Pic.#6 MC experiment: flyover-risk sensitivity —— avg. game time
251 %

241 -6~ no control delay
%~ 1subcycle delay
—*— 1cycle delay

23

22

21

average number of cycles
~

17

16

I I I I I ]
0 0.02 0.04 0.06 0.08 01 0.12 0.14 0.16 0.18 0.2
Py

15

Fig. 2.6.6: Average game time (cycles)

Since we have delay in both controllers, one does not see a monotone decay in the
value as a function of delay. However, the delay does tend to have a more deleterious
effect on Blue. In the fly-over region, the delay has negligible effect. Note finally, that
the length of the game tends to increase.
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3 Optimal and Near-Optimal Route Generation

The first step taken is to find the optimal routes to the target(s) for the aircraft while
avoiding the SAMs. First we discuss the control problem formulation.

3.1 Control Problem Formulation

We formulate the optimal routing problem from the base 74 = (z{},z4) to the target
2”7 € R? as an optimal (exit) control problem;

T Ngr
min / (143 o (XA —zft)) dt (3.1)
0 i=1

u

subject to X4(0) = 24, X4(7) = 27 and

CXA0) =), )] <1 (3.2)

where X4(t) € R? is the location of an aircraft, u(t) = (u;(t),us(t)) is the velocity
control, and xf is the i* opponent SAM site with strength o;, 1 < i < Ng. The loss
function /; represents a loss due to flying close to the site 7, and for example ;(z* —2%) =
m That is, the optimal route is determined so that the sum of time and total loss

is minimized. The optimal control of (3.1) is given by the feedback law [14]

Voa (X4(1))
|Voa (XA(2))]
where the value function V satisfies the Hamilton-Jacobi-Bellman equation
—[Vea(a?)[ + L(z?) =0, V(z")=0
(3.4)

Ngr
with £(z%) =14+ 0, 4;(a® — 2f),
i=1

3

Next, we describe the numerical method to HJ equation (3.4). Let V;, denote an
approximation of V" at each grid point (z;, y;) which is uniformly distributed over a square
domain © in R?. Let h > 0 be the stepsize and we define the backward and forward
difference

(D )iV = V—*L, (D});;V = &{;‘/L

(3.5)

(Dy )iV = =ty (D) V = Py

We use the upwinding method of Godnov to discretize (3.4):

VImax((D; )iV, =(Df)i, V)2 + [max((D, )iV, (D )i V)P = b

y
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where

Ui = U(xi,y5).
We employ the fixed point iterate [36]: let V" denote the n-th iterate and we update
V5 by solving (3.5) for V5" at each grid point, given Vi, ., V™, ., V%, Vi | The
exact step is given as

_ : n n _ : n n _ 02
Qi = mm(viq,ja i+1,j)7 bij = mm(Vz‘,jqa Vi,j+1)a Cij = Ei,j

Sij = Cij — (ai; — bij)?
VZ;'-H = %(az‘,j + bi,j) + VAER + Si,j if Si,j Z 0
V;-Z'Jrl = min(ai,j + bi,j) + /Cij if 5i; <0

We have the boundary (exit) condition V;; = 0 at the target grid and also we set Vj ; = 0o
at the boundary of Q. The initial iterate can be set is as V% = [(z4, ;) — 27].
We solve the closed-loop equation
9 yaggy — _ Ver(X4(0)
dt Ve (XA(®)]

by the finite difference method, given stepsize At > 0. We approximate V, at the grid
point (z;,y;) by the central difference approximation

. — <V;'+1,j —Vici; Vijy — W,jl)
" 2h ’ 2h

and use the bi-linear interpolation at (x,y) in the i, j sub-square, i.e.,
Vaa(X1) ~ W(a,y) = (1= di)((1 = do) Wi + doWyi1) + di (1 — do) Wi g + doWis i)
where X4 = (z,y) and d; = x — z; and dy = y — y;. Thus,

X — X = - D)
V(X

In summary
e Optimal routing problem is formulated as an optimal control problem.
e Optimal route is determined by Dynamic Programming (DP) principle.

e We develop an efficient and robust algorithm based on DP.

e The algorithm is implemented on Matlab and runs under 30 sec for 100 by 100 grid.
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In Figure 3.1 we show

(1) The contour of the Value function (the potential curves for cost to the target (0,0)
from the base) Red (high) to Blue (low).

(2) Routes from various starting points (black lines).
(3) Each route is normal to the potential curves.
(4) 7 SAMs (spots on Fig.) are covering the target at (0,0) with equal strength.

The algorithm assigns the risk factor to each selected route and determines a sequence
of SAMs which we may be engaged with on the way to the target. The algorithm is also
used to determine the accessibility to the selected targets from a specified air base by
formulating the exit problem to the specified base.

We have also tested the algorithm by varying the strength o; of SAMs. The uncertainty
of SAM location can be incorporated in our formulation by replacing the point location
to the normal distribution with zero mean and selected variance. It is observed that
the algorithm generates the routes which reflect to changes in the SAM strength and
uncertainty of their locations.

The geographical constraints can be incorporated by modifying the loss function /¢
accordingly.

3.2 Multi-Body Dynamic Formulation

Our proposed optimal routing algorithm is quite efficient. It is most useful in the op-
erational and planning level. In order to incorporate the SAM movement and agile and
dynamical changes in their uncertainty and conditions, we propose the following feedback
law based on multi-body interaction dynamics. The algorithm can be implemented in
real time and on-board. Let x]T be the target location with value w; for 1 < j < Np. A
route X4(¢), t > 0 is determined as a solution to

d . 4 Waa (XA(1)) A A
CxA@) = -2 W xAg) = 3.6
where the potential function W is given by
Np Ngr
W(zh) =3 wilat —af| + 3 0. U(la” — 2ff)),
7j=1 =1
e.g., Uz — zf|) = m Thus, the force field W, 4 is given by
N oA — T Ng A — R
A J i
“Wea(z?) ==Y wj—F——F+)> 05—
jzjl e — 2T ; |zA — xl3



Fig. 3.1
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A_pR

Here the term — |xA7| represents an attracting force to the target j and the term

T
zA—zf[3
is for a repelling force from the SAM site 4.

We can relate a closed loop system (3.6) to the optimal control problem (3.1)—(3.2)

as follows. We define the performance index £(z*) by ¢ = |W,a|. Note that if o; = 0 and
N4 =1, then V=W = |24 — 27| and u(t) = —% is optimal. |W,(z)| attains
local minima and maxima at the same points as () defined by (3.4) does.

We compared the proposed algorithm with the optimal routes we generated. We ob-
served that the algorithm generates a similar route to the optimal one with appropriately
chosen SAM strength o; In the following Figure we show our comparison results.

Similarly, we also construct a movement of SAMs as follows. We assume that they
protect the targets while avoiding voids.
d W,r(XA(t), XE(t
dpy _ W X0, X7(0)
dt [Wor(XA(E), XT(t)

(3.7)

where the potential function W is given by

Nt
W(at, a®) = =37 w;|af — |
=1
Nr Ng ’
+3° 3 65 U2 —aff +Zaz )

i=1 j=1

= —+—. Thus the force field W,z is given by

‘i_j‘

F A R Al aft —al
_ i J
Wor(z®, @ )——ley 2R — 47|
j= j
+§’E 5 aft — af . ok — 24
i, 9
j#i ! sz xf|3 |mf2 - xA|

R R R
with attracting force % to the target j and repelling forces ot xR‘:,,

A combined closed loop dynamics (3.6)-(3.7) has the game theoretic interpretation
that is similar to the one for the optimal control problem. We consider the differential
game

n N

min max / O wj g - T|+Z 0i i yi)]
A
(3.8) m m
> > Gy ((xf — a:f) + Z w; |(xf — xﬂ) dt
=1 j=1 j=1
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subject to

d d
SXA) = wl0), lul <1, S XF @) = w(0), |l < 5.

The optimal feedback solution to (3.8) is given by

VG 0at0) o Vsl (0.0R()
W0 = @@ @) TP VA, 220

where the game value V satisfies
(3.9) —|Vea (@, ™) + B[ Vor (2%, %) + £(a”, 27) = 0.

Now we set V = W by

n N m
W =313 wlag —zj |+ o Uy —z)]
(=1 j=1 i=1
m m 5 N
=22 GiUG — ) + 3 wy|(aff — xj|) dt
i=1 j=1 j=1

and R X
E(J"AaxR) = |W:I:A(xA7xR)| - B |W:I:R(xA7xR)|'
Then (3.8) holds.

4 Expanding Problem Size with Hierarchical Tech-
niques

This section is divided into two parts. The first is concerned with dynamic allocation
games with complete observation. The main approach involves game theoretical studies
and hierarchical decomposition methods. The last subsection contains some mathematical
proofs.

4.1 Hierarchical Games with Complete Observation

Two troops (red and blue) are engaged in a battlefield. Blue troop’s assets include aircrafts
(e.g. bombers) and its goal is to damage or destroy red targets (e.g. oil refinery) and
surrounding SAMs (surface-to-air missiles). Red troop on the other hand operates SAMs
to protect their resources (targets) and aims at damaging or destroying blue aircrafts.

In this section, we consider the case with completely observable states, i.e., all red
states are available to blue troop’s decision making.

Assume that the battle field is geographically divided into two regions R; and Ry; see
Fig. 1.
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Fig. 1. The Model

To illustrate the idea of hierarchical control, let us divide further each of these regions
into two smaller sub-regions R;;, 7,7 = 1,2 so that Ry = Ry; U Ry and Ry = Ry; U Ryo.

For simplicity, we assume that there are four targets, one in each of these four sub-
regions. A target has two states {functional, destroyed} denoted by {1, 0}, respectively.
Here “functional” means it is either operational or partially operational. We use T;; to
denote the state of the target in sub-region R;;, 7,7 = 1, 2.

Decisions that concern both blue and red troops involve allocations of assets between
different regions or sub-regions over time.

Owing to the inherent complexity of command control systems, it is difficult to obtain
exact optimal solutions. To reduce the overall complexity of the underlying system, it is
necessary to resort to hierarchical control approach via aggregation and disaggregation
methods. Analysis of various aggregation methods in connection with manufacturing
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systems and continuous-time dynamic systems and their near optimality can be found
in [38], [39] and references therein. In this report, we consider the following hierarchical
structure:

High level. Re-allocation between R; vs. R,. These allocations are usually costly
and are infrequent events. These decisions are made at higher level of the command
control hierarchy.

Low level. Re-allocation between R;; vs. R;y, ¢ = 1,2, These are less costly and
occur occasionally. Such decisions are made at lower level of the hierarchy.

Such decomposition approach is natural in command control systems because the
interaction among each regions is weak compared with the interaction within the regions.

Let N¢ denote the total number of blue aircraft units and N°® the total number of red
SAM units, respectively, that are initially available.

In this report, let us first focus on the upper level decision making. Lower level
problems will be treated subsequently. For i = 1,2, we consider the aggregated target
variable T; defined as T; = T;; + T}». Recall that T;; € {0,1}. Thus T; € {0, 1, 2}.

Re-allocation Decisions: Both blue and red troops have the option of moving their
assets from one region to the other at certain costs. For simplicity, here the allocation
is assumed to be instantaneous. Delays in these allocations can be handled in a similar
fashion.

Given ¢ = 1,2, let X! denote the total number of blue aircrafts in region R; and let
X7 denote the total number of red SAM units in R;.

The blue troop decides if there is a need to move a number of aircraft units from one
region to the other. We use U/ to denote the new aircraft allocation in region R;.

Similarly, the red troop makes a decision over time on the allocation of its SAM units
and the new allocation denoted by U} in R;, for i =1, 2.

A fixed cost is incurred each time a re-allocation is made. For example, if [* aircraft
units are moved from R; to R, then corresponding cost to blue troop is

K®-1% for given K > 0.
In this case, U = X{ —[* > 0 and U$ = X§ + [°.
Similarly, if /* SAM units are moved from R; to R, then
K?-1%, for some K° > 0,

is incurred and U} = X7 —1° > 0 and U5 = X3 + [°.

We use the notation X* = (X7, X$), X* = (X}, X3), T = (I1,T»), U* = (U, US),
and U* = (U7,Us). We also use Ix = (X X*,T) and Iy = (U*,U*,T) to denote the
states before and after a re-allocation, respectively.
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Transition Probabilities. Given the current state vector Iy, if there is no re-
allocation decision is made, then the states of aircrafts, SAMs, and targets can jump
to any states according to a conditional probability given Ix. If there is a need for
a re-allocation, then such allocation will be made immediately and Ix is changed to
Iy = (U, U*,T). The distribution of the new state vector will be determined by the
conditional probability given Iy;.

In each region R;, the jump rates of X{ depends on X;. Similarly, the jump rates in
X; depends on X! and the jump rates in 7; depends on both X" and X.

Objective Function. The game is considered to be over if either all the aircrafts are
destroyed, i.e., {X® = 0} or all the targets are destroyed, i.e., {T = 0}.

The objective of blue troop is to make re-allocation decisions over time so as to min-
imize P(X® = 0) and maximize P(T = 0). On the other hand, red troop wants to
maximize P(X® = 0) and minimize P(7 = 0) by allocating its SAM units.

Let M denote the state space of Iy = (X% X*,T). Also, let M, and OM denote
classes of transient states and absorbing states, respectively. Then M = M, U OM.

For each Ix, Iy € M, define the re-allocation cost function
G(Ix,Iy) = K*| X7 - Uf| = K°| X7 = U7,

Recall that X{ + X¢ = Uy + Ug and X{ + X5 = Uy + Us. It follows that G(Ix,Iy) =
K| X3 —Us| — K°| X5 = Us|.

Let Ix(n) denote the state vector at time n. Define the stopping time
7 =min{n: Ix(n) € OM}.
We also define the terminal cost
U(Ix) = X{xe=0) = X{r=0}-

where Y4 is the indicator function of a set A.

Note that
E¥(Ix(r)) = P(X“(1) = 0) = P(I'(1) = 0).

The objective function can be given as follows:

J(Ix,U%-),U%(")) =FE {z:)G(Ix(n),IU(n)) + \II(IX(T))} :

The red troop wants to maximize .J and the blue troop wants to minimize maxys J.

Let G ={f: M — R! and f satisfies the boundary condition v = ¥ on OM}.
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Given f € G, let

minga maxUs{EjeM P(Iy,J)f(J)+ G(IX,IU)} for Ix € M,

HUX&)z{
V(Ix) for Iy € OM.

where P([,.J) is the transition probability from state I to state .J.

The associated Isaacs equation is given by

v =H(v).

We arrange the order of M so that the corresponding transition matrix has the form

_(Pr P
where P corresponds to the transient states in M, and [ is an identity matrix that
corresponds the absorbing states in OM.

Assumption (A). We assume that all eigenvalues of P;* are inside the unit circle.
Assumption A implies that
1270l < afjbl|

for any vector b and 0 < o < 1, where the norm ||(by,...,bg)|| = /0% + - - - + b2. Clearly,
« determines the how fast the state vector reaches M, which in turn determines the

convergence rate when solving the corresponding Isaacs equation.

Under Assumption A, there should be no other recurrent states other than the ab-
sorbing states in M. Namely, the game has to come to an end with either aircrafts or
targets destroyed.

Theorem. Under Assumption A, the following assertions hold.
(1) (Uniqueness) The Isaacs equation v = H(v) has a unique solution.

(2) (Convergence) Given vy € G, define vy = H(vy). In general, given v, € G and
define v,,+1 = H(v,). Then v, converges to v, which is the solution to the Isaacs equation
v = H(v). Moreover, the convergence rate is of order a, i.e.,

n

o
[lon = vll < T——llvr = voll.

-«
(3) (Verification Theorem) Let v be a solution to v = H(v). Then
v(Ix) < Jmax(Ix, U(+)) := max J(Ix, U(), U%(+))

Us()

Moreover, let U? denote a minimizer of

max{ X PUi. () +GIx. 1)}

Jem
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Then U¢? is optimal, i.e.,
v(Lx) = Jmax(Lx, UY ().

Initial Allocation.

In practice, it is important for both sides to allocate their resources appropriately at
the beginning of the game. This is especially the case when the re-allocation cost is high.
One approach within the framework of dynamic games can be given as follows.

Let v(Ix) = v(X{, X$, X}, X5, T1,T,). For fixed (71,T3), the blue troop chooses
(X{, X$) to minimize max(ys x5)v(Ix) subject to X{ + X§ = N*.

Given these (X, X§), the red troop chooses (X7, X3) to maximize v([x) subject to
X5+ X3 = N°,

Example. Take N* =8, N* =8, and K* = 0.1, K* = 0.2. Let I* denote either X7
(or X&) and let I* denote either X7 (or Xj). We take

0.37°
P(I*— (I" = 1)|I*) = ——;
("= ("= DI = g
0.31¢
P’ = (I' =11 = ——;
( ( 1) 0.37¢+1’
0.061*+1 Do .
et po 0‘215_1_1,]91 p0+1,an D2 ot 1 onsider
100
P(T =TI )= | pLp: 0
0 p1 p2

Given T} =Ty = 2, the optimal initial allocation is

(X0 X8 X5, X5) = (4,4,4,4).

Moreover, given the state vector, the optimal policies can be found in a lookup table.
For instance,

if (X, X8 X7, X511, Ty) = (4,4,3,5,2,2), then (U2, UL, U, US) = (4,4,3,5); no
changes needed.

If (X¢, X8, X5,X5,11,T,) = (4,4,3,5,0,2), then (U}, US,US,Us) = (0,8,3,5), i.e.,
one only needs to move 4 aircraft units from R; to R».

If (X9 X2 X3, X3, T, T») = (1,1,5,3,0,2), then (U2, UL, Us,U3) = (0,2,4,4), ie.,
move 1 aircraft unit and 1 SAM unit from R; to R,.
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Lower Level re-allocation: Let us discuss briefly lower level allocation. We only
consider the re-allocations between regions R;; and R;» because the situation is similar
in regions Ry and Ras.

In this case, the state variables are the number of targets 715, T, such that T3, € {0, 1};
blue aircraft units X{,, X{,, where X{, denotes the total number of aircraft units in region
Ry;, 1 = 1,2 and red SAM units X7, X7y, where X7, denotes the total number of SAM
units in region Ry;, i =1, 2.

The re-allocation decisions are involved to change (X{,, X{,) — (Ufy,Uf,) such that
X+ X, = Uy + U, for blue troop and change (X7, X?,) — (Uf,,U;,) such that
X7, + Xi, =U;7, + Uy, for red troop.

A setup cost is incurred if a re-allocation decision is made. For example, if [* aircraft
units are moved from R;; to Rj9, then K7 - [ is incurred and Uy, = X{;, — [* and
Uf, = X{, +1*. Similarly, if [* units are allocated from R;; to Rjy, then K7 -[° is incurred
and Uy, = X7, — I* and U}, = X7, + [*. Typically, K{ < K® and K} < K?°. This is
because the cost for moving within a region is greater than when moving between regions.

Transition probabilities and objective functions can be determined similar to that for
the upper level model.

Sensitivity Tests (Upper Level Only)

We use the Monte Carlo method to test the sensitivity of the the control policies
with respect to changes in various parameters. Consider the model with a set of “true”
parameters of transition probabilities and setup costs. We generate sample paths using
these true parameters.

Then we add a small perturbation € to each of these parameters. The perturbed model
produces a set of control policies U%, U (this is a time consuming part). Such control
policies lead to the corresponding theoretical upper value V¢ and Monte Carlo averages
Je.

The following parameters are used in the tests.

Setup Cost: K* = 0.1+ 0.1¢ and K*° = 0.2 4+ 0.1¢.

Transition Probabilities: Let I* denote either X{ or X§ and let I* denote either X7

or XJ5. We take
(0.340.1¢)1°

(0.3+0.1e)* + 1’

P(I*— (I*=1)|I*) =

(0.3 4 0.1¢)I°

P = =D = G0+ 1

(0.05 +0.1) 1% + 1

d
02+01)s+1

Let Po =




1 00
P(T =TI I°) = | pi p2 O
0 p1 po

The numerical results are summarized in the following tables. Two cases are consid-

ered.

Case 1: Tyo = (X8, X8, X2, X3, T, Ty) = (4,4,2,6,2,2).
In this case, V°(Ixo) = —0.6844 and J°(Ixo) = —0.4910.

Case 2: Ixo = (X{, X5,

Table 1. Perturbations in Transition Probabilities

s | VE [VEVI[ [T
0.5 |-0.6732 | 0.0112 | -0.4780 | 0.0130
0.1 |-0.6826 | 0.0018 |-0.4930 | 0.0020
0.01 [ -0.6842 | 0.0002 | -0.4910 | 0.0000

Table 2. Perturbations in Setup Costs

e [ VTV VI[ F [[F=J
0.5 [-0.5626 | 0.1218 | -0.3675 | 0.1235
0.1 [-0.6599 | 0.0245 | -0.4701 | 0.0209
0.01 [ -0.6819 | 0.0025 | -0.4885 | 0.0025

Now, VO(Iyo) = —0.7196 and J°(Ix0) = —0.6490.

X3, X3, T, To) = (4,4,4,4,2,2).

Table 3. Perturbations in Transition Probabilities

e | Ve V-V F [ =T
0.5 [ -0.7120 | 0.0076 | -0.5900 | 0.0590
0.1 [-0.7186 | 0.0010 | -0.6330 | 0.0160
0.01 [-0.7195 | 0.0009 | -0.6490 | 0.0000

Table 4. Perturbations in Setup Costs

s | VE [VEVI[ [T
0.5 [-0.6121 | 0.1075 |-0.5245 | 0.1245
0.1 [-0.6979 | 0.0217 |-0.6191 | 0.0299
0.01 [ -0.7174 | 0.0022 | -0.6480 | 0.0011
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Observations: As can be seen from Tables 1-4,

(1) [Ve = V? — 0 as ¢ — 0; this suggests that the value function V¢ is continuous in

(2) J° is close to V?; this means that the averaged value function using the Monte
Carlo method is close to the corresponding theoretical value.

(3) |JE—=J°] — 0 as € — 0; this suggests that one can do nearly as good as the optimal
policies when using the perturbed policies.

These tests suggest that the control policies obtained are robust in the sense that the
corresponding outcomes are not much affected when using close-to-real parameters.

How to determine the value of parameters?

(1) Transition probabilities can be determined using historical data and standard
statistical tests.

(2) Setup costs can be derived using actual dollar amount of each re-allocation plus
the consideration of time delay needed for the allocation.

“Value.”

(1) Without the hierarchical approach: only deal with 2-4 aircraft units and 4-6 sam
units; Now we can handle much larger aircraft and SAM units.

(2) Dramatic reduction of computational effort and time.

(3) The hierarchical approach also provides initial allocations, which makes the system
free from near future re-allocation.

(4) Historical data and human expertise can be used to model a real life scenario,
which makes it possible to use a computer to help human to make decisions that are too
hard to obtain otherwise.

Models with Other Objectives Functions: We may also consider other objective
functions. For example, one may consider the model in which the blue troop wants to
minimize the expected exit time EY]_, pF, where 7 = min{n: T(n) =0} and 0 < p < 1
is a discount factor and the red troop wants to maximize F Y ;_;p*. In this case, the
corresponding [saacs equation is

v(Iy) = min max {1 +p > P(Iy, J)v(J) + G(Ix, IU)} ,
ve v JeEM

with boundary condition v|pr—y = 0.

The other type of objective function typically used in the literature is

7= B{3 P+ GlIx). T |

k=0
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where F'(Ix) = —a(X{ + X$) + b(X] + X3) + ciT1 + .15 for positive constants a, b, 1, cs.
The associated Isaacs equation is given by

v(Iy) = mianrn:%X{ Ix)+p > Py, J )+G(IX,IU)}
ve v JEM

All results stated in the above theorem can be extended to incorporate these two cases
except that there is no need for Assumption A because of the discount factor involved.

4.2 Proofs Related to the Hierarchical Technique

In this appendix, we provide proofs of results.
For any f € G and Ix = (X% X*,T) € M., Iy = (U*,U*,T) € M., define the
mapping

H(7) (L) = minmax{ 5 PIu, 7)f(7) + GlUx, )}
JeM

and H(f) satisfies the boundary conditions.

Proof of Theorem. (Part 1). Let f, f' € G. Given Ix € M., there exists U such
that, for all U?,

H()(Tx) = max{ 30 P, D)+ GlIx, 1) |,
JeM
where I}, = (X, X*,U%, U*,T). Moreover, there exists U? such that
0 0 * *
mU%x{ S P, J)F(T) + G(Ix, 1Y } S P(I, D) + Gy, I,
JeEM JeEM

where I}, = (X X5, U2 Us,T). Then we have

H()(Ix) = H(f)(Ix) < > Py, I)f(T) + G(Ix, If)

= > PS5, f(T) + GUx, 1)
< ;f Py (I3, 1) (F(T) — £(J))
<ollf - FII

Similarly, replace the role of f and f’, we obtain the opposite inequality. In view of the
assumption on Py, it follows that

IH(f) = H()I < allf = fI. &
(Part 2.) It is easy to show that

[ont1 = val| = |[H (vn) = H(vn )| < @llvn = vpa]].
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It follows that
[vn1 = onl] < a™[|vr — ol

This implies that v = lim,, , v, exists and is a solution to the Isaacs equation v = H(v)
with boundary condition v = ¥ on oM.

(Part 3.) This part is similar to the proof in [4, p. 14]. We only sketch the proof for
the sake of completeness.

Using v = H(v), we have

v(Ix(n)) < max {Elv(Ix(n+1))|U%(n), U*(n), Ix(n)] + G(Ix(n), Iy(n))} .

The equality holds if U%(n) = UZ%(n). This leads to

v(Ix(0)) < max J(Ix(0),U“(-),U*(")).

The equality holds if U%(n) = UZ(n) for each n. This completes the proof.

5 The C?Estimation and Control under Imperfect
Information

Most of the work done under JFACC was control (including games) under full state
information (i.e. full state feedback). However, partial, imperfect and even purposefully
corrupted information is a critical part of warfare. In this section, we address estimation
and control under partial /imperfect information. In the latter case, we take particular
care to address the presence of an intelligent adversary in the system. We will discuss
some simple algorithms for estimation of system state given likely data types first. Then
we will discuss control under imperfect information in the final two subsections.

We will use the same problem as given in the previous sections where the Blue player
is sending aircraft against Red player SAMs and targets.

The first basic idea is that the players handle uncertainty by maintaining probability
distributions on the location and number of their opposing player forces. As in most
traditional approaches to output feedback control, these probability distributions allow
each player to estimate the likely states of his or her opponent. With a state estimate, one
may then apply the control derived from the full state feedback analysis. This approach
is by far the most common treatment of control under partial or incomplete information.
It remains, however, to derive the state estimator from the probability distributions.

The second basic idea is that the estimator should take into account not only the
likelihood of the opponents’ states but also the risk associated with those states. Encoded
by the the value function, the risk or loss associated with certain states is computed
in the full state feedback game situation. Our approach integrates the estimation and
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control to balance the objective function and its measurement of risk with the probability
distributions modeling the likely states of the opponent.

In this section, we describe the estimation and output feedback problems in the context
of command and control applications. We also provide some results derived from a detailed
Monte Carlo simulation of the processes involved.

5.1 The Information State Variables

The formulation of this stochastic game relies on two separate state variables for each
player: the "true” state and the information state. Fach player maintains knowledge of
his own state, as well as an information state quantifying his uncertainty in his opponent’s
state. Thus, the state variable s € SS is composed of four components: the true Blue
state, the Blue information state (estimation of Red), the true Red state, and the Red
information state (estimation of Blue). The true states have been discussed above.

The Red information state consists of track filter parameters needed to estimate the
location of the Blue aircraft. For each blue aircraft detected, the Red information state
maintains an estimate of the position, the aircraft velocity, and the covariance of these
quantities.

The Blue information state is a 3 X G matrix, whose entries are the probability of a
Red entity of a given type at a particular grid point. That is, biy , is the probability of a
type k entity at grid location g, where £ = 1 denotes SAM, k = 2 denotes emitter, and
k = 3 denotes nothing.

5.2 Information Probability Modeling

To determine the appropriate transition probabilities, we will need probabilities to quan-
tify how engagements are resolved and how information propagates.

The fundamental probabilities in an engagement are the probability that a Blue at-
tack destroys a Red entity and the probability that a Red SAM attack destroys a Blue
aircraft. These probabilities have been described above. Here we focus on the probability
distributions for the information states.

Detection and classification probabilities are the primary entities of this modeling
effort. Both players have detection problems. The Red player has the additional problem
of establishing a track on the Blue aircraft, while the Blue player has the problem of
discriminating between SAM radars with track and defensive missile guidance capability
and emitters, which are decoys emitting a signal that ”sounds like a SAM radar.”

We denote by pj(w) the probability that a Red SAM detects an aircraft present at a
distance w. Likewise, we denote by p(w) the probability that a Blue aircraft detects a
defensive entity (SAM radar or emitter) that is turned on (i.e., emitting a signal).
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5.3 The Estimation Problem for Blue

For the Blue player, we assume that the electronic system has signal processing capability
to perform a classification based on received signals. We model this capability with a
simple and flexible two-class statistical discriminator, which is encapsulated in statistical
error probabilities. We define pbce(w, 1) to be the probability that a Blue aircraft correctly
classifies a Red entity of type [ at a distance w. This simple model applies to many, if not
most, radar-based discrimination schemes. The underlying data processing of the radar
returns could range from the standard linear discriminator to a neural net or nearest-
neighbor classifier. Any of these schemes will have probability of correct classification.

We apply the standard Bayesian approach to modeling the information state updates.
For the Blue state, we begin with the ”observation likelihood.” That is, we seek to de-
termine the probability that a SAM, emitter, or nothing is at grid location g given what
we’ve observed at the current time. We set

NA

w
pbo(yg = Z(l — Wk)pbcc(wk, D51k, T5(),9)
k=1

in which wj, denotes the distance between the k — th aircraft and the grid location g,
W = Z{CV:AI wyg, and the function pbce is the probability that Blue correctly classifies the
entity at a site. Conceptually, the function should decrease with wy : small distance should
translate into more accurate classification. The dependence on the Blue state should be
simple: as long as the Blue aircraft is alive (bs;, # —1), then pbcc depends only on the
actual Red state and the distance. Then the Blue information update formula becomes

o __pbollg)bill,g)
Ly > pbo(l, g)bi(l, g)’

through an application of Bayes’ rule.

5.4 The Estimation Problem for Red

We assume that Red observes aircraft existence and location. We assume that a Red
detection of an aircraft by a SAM requires that that particular SAM radar be on. If
the SAM is on, then detection of any given aircraft is a random event where the detect
probability depends on the distance from the SAM to the aircraft. In particular, we take
the detect probability to be .
rTo__
P = T (r/dp

where 7 is the distance from the SAM to the aircraft, and d is a scaling parameter. We
assume that if there is a detection, then Red also obtains a position observation. In
particular, we simplify the problem for the purposes of this study by having a position
observation with spherical error covariance rather than taking into account the details of
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range, azimuth and elevation components of the observation, as well as the possibility of
doppler measurements. We also place the entire problem in a two-dimensional space (no
altitude component).

The Red player then uses a sub-optimal filter to track the Blue aircraft. The Blue
State in the Red filter model consists of a situation state, Sg taking values in {1,0, B} for
“in air”, destroyed and at base, as well as a position vector and a velocity vector. Ideally,
the filter would have a position/velocity estimate and covariance corresponding to each
possible path of Sg up to the current time. Of course, this explodes exponentially as time
moves forward, and so we take the standard approach of only carrying a finite number of
these along. In particular, at each time step, the filter is reduced to three probabilities for
Sk, P*(t); specifically, P*(t) is a three-vector with for instance, P;(t) being the probabilty
that the aircraft is such that Sg(t) =1 (i.e. the probability that the aircraft is in the air).
Corresponding to each element of this three vector is a mean position/velocity vector and
a corresponding covariance (a 4 x 4 matrix).

The position/velocity means and covariances are updated by the standard Kalman
filter equations. More specifically, we assume for simplicity that the SAM uses a straight-
forward state space model for an aircraft’s dynamics:

z(t+Ay) = z(t) + Aw(t) + we(t) (4)
v(t+ Ay) = v(t) + w,y(t), (5)

in which x and v denote the aircraft position and velocity vectors, and w, and w, denote
plant noise in the position and velocity models. For the observation updates, we assume
each SAM radar observes the aircraftwhich they detect, and that the Red defense pools
the information into an observation vector Y'(¢). For an aircraft at position x(t), the
components of Y (¢) are

Yi(t) = x(t) + &)

where the i subscript indicates the i*» SAM radar’s observation of position. We include
the simplest case here to begin to understand the effect of partial information on game-
theoretic controls.

Finally, note that we do not consider the track association problem here. In other
words, we assume that when the SAMs receive an observation, they correctly associate
that observation with the corresponding aircraft that was observed. The track association
problem is not relevant to the study we are making here, and the additional complication
would be detrimental to our investigation of the C? problem at hand.

5.5 Blue Control under Imperfect Information

Having defined our information states in terms of probabilistic models, we now proceed
with the tasks of developing estimators and integrating observers into the control system.
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The goals of this research project involve developing and understanding control strate-
gies for air operations. Our particular interest has been in strategies that counter intelli-
gent opponents in a robust way. Toward that end, we seek here to include these robustness
consideration into the estimation problem: that is, we seek estimators that balance accu-
racy of estimation with the risk associated with conducting the air operation.

Traditional approaches to output feedback control involve the separation principle, or
the certainty equivalence principle. The basic idea is to develop feedback controls for the
full state feedback problem and apply them replacing the state with a state estimator. The
most common estimator used is the maximum likelihood estimator. It is well known that,
for linear control systems with quadratic cost criteria, the separation principle control
coincides with the optimal control.

Another Certainty Equivalence Principle exists in robust control. We have applied
a generalization of this estimator, discussed below, that allows us to tune the relative
importance between the likelihood of possible states and the risk of being in those states.
Let us motivate this in a little more detail.

The problem of Stochastic Games under Partial Observations (without resorting to re-
placement of state by the information state, which is hugely higher dimensional — infinite-
dimensional in continuous state problems) is NOT solved. The Certainty Equivalence
Principle (sometimes true — usually not) allows one to separate the the filtering and con-
trol components to some extent. In deterministic games under partial information, the
Certainty Equivalence implies that one should use the optimal control corresponding to
the state given by

T € argmax [P(t,z) + V (¢, x)]

where P is the information state and V' is the value function (assuming uniquueness of the
argmax of course). Here, the information state is essentially the worst case cost-so-far,
and the value is the minimax cost-to-come. So, heuristically, this is roughly equivalent to
taking the worst-case possibility for total cost from initial time to terminal time. (See, for
instance, James et al., and McEneaney ([21], [20], [28], [29].) The next three paragraphs
discuss the mathematics which lead to the heuristic for the algorithm described in the
fourth paragraph below. Readers uninterested in these details should skip directly to the
fourth paragraph below.

The deterministic information state is very similar to the log of probability density in
stochastic formulations for terminal/exit cost problems. (In fact, this is exactly true for
certain linear/quadratic problems.)

A risk-averse stochastic control problem is given by



This risk-averse stochastic control problem is equivalent to the stochastic game:

g = [/ (6(0), ult)) + o €O w (O] di + Vo 6(0) A,
So=u

T w) = B LEC), () - S}

Vi(z) = Hz}f Sup Je(z, u, w).

Both have the same Dynamic Programming Equation:
0= ‘/t + ¢ Z(UJT)i,iji,xj
]
+inf{[f(z,w)]"VV + L(z,u)}
1
T 2
+S?Up{[a(x)w] VV Sl }
= Vi 42> (00")iVara, + nf{[f (2, w)]"VV + L(z,u) }
]
1
+§[VV]TJUTVV.
It is by now well-known that risk-averse control converges to a deterministic game as

e} 0 ([11], [12], [13], [32]). All of this lends credibility to a study of the use of the above
Certainty Equivalence approach for our problem (although it will be sub-optimal).

In the stochastic linear/quadratic problem formulation, the information state at any
time, ¢, is characterized as a Gaussian distribution, say

p(t,x) = k(t) exp{ =3 (z — 2(1))" O} (1) (x — 2(1)) }.

In the deterministic game formulation, the information state at any time, ¢, is character-
ized as a quadratic cost, say

P(t,z) = —5(x — (1)) Q(t)(x — 2(1) + ().

Interestingly, @ and C'~' satisfy the same Riccati equation (or, equivalently, @~' and C
satisfy the same Riccati equation). T and T satisfy identical equations as well. Therefore,
P(t,z) = log[p(t, z)] + “time-dependent constant”.

The above three paragraphs form the (partially) heuristic argument behind our algo-
rithm. This algorithm is: apply state feedback control at

argmax{log[p(t, z)] + kV (¢, 2)}

where p is the probability distribution based on the above observation process and filter
for Blue (or Red), and V is state feedback stochastic game value. Here, k € [0,00) is
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a measure of risk-aversion. Note that x = 0 implies that one is employing a maximum
likelihood estimate in the state feedback control (for the game), i.e.

argmax{log[p(t, )|} = argmax{p(t, x)}.

Note also (at least in linear-quadratic case where log p(t, z) = P(¢, ) (modulo a constant),
k = 1 corresponds to the deterministic game Certainty Equivalence Principle, i.e.

argmax{ P (t,z) + V(t,x)}.

As k — o0, this converges to an approach which always assumes the worst possible state
for the system when choosing a control — regardless of observations.

Assuming Certainty Equivalence allows us to use our earlier experimental result (see
above sections): The optimal Blue strategy is always either rollback or fly-over. This
reduces our search over Blue controls by an order of magnitude for our problem.

5.6 Numerical Experiments with Robust Blue Control under
Imperfect Information

We have developed a simulation for the partially observed problem, which uses as an
input the full state feedback controls computed using the software described in previous
sections. However, now for the Blue controller, we combine the estimator and controller
via the risk-averse technique described in the previous section. The simulation generates
observations and battle outcomes according to the appropriate probability models and
evolves the information states as the engagement progresses. The controllers observe the
state, and input the controls accordingly.

We note here that the new control software for the partially observed stochastic game
allows any number of SAMs up to 6, that is without needing the hierarchical control. (The
simulator and estimator do not have any hard bounds on the number.) It also allows any
number (up to number of grid points) of possible SAM/Emitter locations. However, a
practical detail is that one needs to store “tables” for each possible geometry distillation
of 6 SAMs. The maximum number of Blue aircraft and Red targets is two each (without
the hierarchical controller). Recall that the geometry distillation describes which Red
entities lie under which other SAM umbrellas. (Many different geometries may have the
same distillation.)

The example below has only a few SAMs and decoys, but this is not necessary. One has
the standard exponential growth in computation with number of aircraft (or packages),
number of SAMs and number of targets. One has slower growth in real-time computation
with number of decoys.

Figure 5.1, which is a snapshot of the simulation in progress, illustrates the process.
Included in this image are aircraft (in black), SAM sites with radar (in pink if on, red
if off), emitter sites (in cyan if on, blue if off), and targets (in magenta). The black
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Fig. 5.1

circles indicate kill radii for the SAMs. The bar graphs to the right of the battle cartoon
indicate the likelihoods for Blue for each site: Blue must estimate based on observations
the probability that a site is a SAM radar or an emitter decoy. Specifically, the red/pink
bars indicate the probability that the site is a SAM, and the blue/cyan bars indicate the
probability that it is an emitter. (We also allow a probability that there is nothing at that
location.) Also pictured are green circles which give the 20 radii of the aircraft position
estimates for the Red information state.

Applying this simulation for many Monte Carlo engagements, we can assess the ex-
pected value for a particular scenario. In Figure 5.2, we have selected a scenario which has
3 SAM sites, 2 emitters, and 2 aircraft attacking two targets. Running the simulation for
2000 Monte Carlo samples, we can assess the impact of the risk-averse estimator weight
parameter k£ on the outcome. The plot below shows that there is an optimal value in
between applying the straight maximum likelihood estimator and the Kk — oo approach
(which ignores all observations — assuming the worst-case state). Applying the traditional
separated controller/estimator approach (k = 0) produces reduced performance, which
means that the Blue player is more likely to lose aircraft under this approach than under
the risk-averse combined controller/estimator of the previous section, which takes a more
game-theoretic, risk—averse approach. Note that the horizontal axis is on a log scale, so
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Value vs. log(kappa)
_48 T T

-49 Value = 20*(A/C damage)-20*(Tgt damage)-3*(Sam damage) b

=51 xhat = argmax(Pr(x)*exp(kappa*Value(x)) B

Game Value

0.5

log(kappa)
Fig. 5.2

that the minimum in k is rather broad.

6 A State Estimator for the upper Hierarchical Lev-
els

In this section, we consider a filter for a higher level in the problem hierarchy in which the
Red state is not completely available. Instead, the state with additive noise is observable.

Let X, denote the number of SAMs (or state of targets) in a given region at time n,
which is not directly observable. One only observes Y,, = X,, + noise. The objective is to
estimate X,, using information {Yp, Yy,..., Y, }.

Let X,, € {0,1,...,m} be a Markov chain with transition probability matrix P =
(Pij) m+1)x(m+1)- The observation process is

Y,=X,+0o(n X)W, n=0,1,2,...,

where o is a function of n and z, and {W, } is a sequence independent Gaussian N (0, 1)
random variables.

Algorithm.
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Let m;(n) = P(X,, = i|Yy,Y1,...,Y,). Then fori =0,1,...,m,
mi(n+1) = mi(n) + (P — I)*m;(n)
i = Eﬁoﬂj(ﬂ)) (Yn+1 - Zﬁoﬂj(ﬂ))

m;(0) = p? given,

where
o = P(Xy = i[Y),
5(n) = - o{n, j)m(n)
and -
w—mmmgimz@mm

and 6;; = 1 if i = j and 0 otherwise.

Remark. This algorithm is derived from an exact optimal filter in a continuous-
time model. It provides fast and in the meantime fairly reliable estimates for finite-state
Markov chain.

Using the conditional probabilities, we define the maximum likelihood estimate of X,
X7 =4 if mi(n) = max{m;(n): j=0,1,...,m}.

We also define the conditional mean
j=0

and its integer version

o~ —~

1
Xp=iifi—g <X, <itgfori=01,....m.

Remark. Note that it is difficult to obtain a recursive form for Yn because the
underlying filtering problem is nonlinear.

Numerical Experiments.

In our numerical simulations, we take m = 8 and

03030202 0 0 0 0 0
02030203 0 0 0 0 0
0 030502 0 0 O 0 O
0 00206020 0 0 O
P=|10 00205030 0 0 O
0 0 0 0020602 0 O
0 0 0 0 0030502 0
0 0 0 0 0 0010702
0 0 0 0 0 0 00208
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We consider o(n,z) = 0.2z + 0y. We fix Xy = 8 and take the initial distribution (with
given ig) to be of the form p;, =1 and p) = 0 for i # i,.

First, choose i = 8 and vary oy, i.e., we have precise initial estimate on {p?}. The
dependence on observation noise is given in Table 5.

Table 5. Dependence on observation noise.

0o 0.1 0.5 1 1.5 2
E(X,— X,)? |0.929 | 1.018 | 1.163 | 1.306 | 1.446
E(X, — X2a)2 1 0.711 | 0.840 | 1.024 | 1.244 | 1.447

It is clear that the larger the observation noise, the greater the estimation error.

In Figures 1.1 and 1.2, sample paths and the corresponding conditional probabilities
are plotted (with og = 0.5). Then in Figures 2.1 and 2.2, we plotted the same functions
with 09 = 2. In this case, the observation noise is much greater (as seen on Fig 2.2).
However, the filtering algorithm performs quite well.

It is interesting to see (Figures 1.2 and 2.2) how the conditional probabilities evolve
following the state jumps.

Then, we fix 0y = 0.5 and vary i5. We examine how the algorithm works with poorly
chosen initial distributions.

Table 6. Dependence on initial probabilities.

N 0 1 2 3 4 Y 6 7 8
E(X, — X,)* |3.003|2.678 | 2.561 | 1.950 | 1.550 | 1.310 | 1.137 | 1.036 | 1.018
E(X, — XMax)2 19380 | 2.181 | 2.056 | 1.558 | 1.233 | 1.057 | 0.915 | 0.851 | 0.840

As can be seen from this table that error increases continuously as the choice ig moves
away from the true value 7o = 8. However, as shown in Figures 3.1 and 4.1, these errors
disappear quickly in both cases with 0 = 0.5 and o = 2.

Sensitivity Tests.
First we consider sensitivity with respect to observation noise
o(n,z) = (0.2 +¢e)z+ (0.5 +¢).
We fix i = 8.
Table 7. Perturbations in Observation Noise

€ 0.5 0.4 0.3 0.2 0.1 0.05 | 0.01 0
E(X, — X,)? | 1.221 | 1.162 | 1.112 | 1.065 | 1.027 | 1.021 | 1.013 | 1.018
F(X, — XPax)2 11,496 | 1.310 | 1.153 | 1.022 | 0.895 | 0.855 | 0.838 | 0.840
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State Estimation: Sample Paths
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State Estimation: Cond Prob
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State Estimation: Sample Paths
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State Estimation: Sample Paths
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State Estimation: Sample Paths
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Next we fix o(n,z) = 0.2z 4+ 0.5 and ip = 8. We add a perturbation to transition
matrix P:

034+ 03—-¢ 0.2 0.2 0 0 0 0 0
02 03-024¢ 0.3 0 0 0 0 0
0 03 05—-¢024¢ 0 0 0 0 0
0 0 02 06—-¢024¢ 0 0 0 0
P = 0 0 02 05—-¢03+¢ 0 0 0 0
0 0 0 0 0.2 06—-¢024¢ 0 0
0 0 0 0 0 0.3 05—-¢024¢ 0
0 0 0 0 0 0 0.1 07-¢02+4¢
0 0 0 0 0 0 0 02+4+¢08—¢

The numerical results are as follows:

Table 8. Perturbations in Transition Probabilities.

5 02 | 01 [ 005 ] 00L] 0
E(X, — X,)? | 1.278]1.002 [ 0.999 | 1.016 | 1.018
E(X, — X™)2 [ 1141 | 0.830 | 0.821 | 0.835 | 0.840

These results demonstrate that the algorithm is robust in the sense that the output
depends on parameters in a continuous fashion. The implication is that one does not
have to have exact value of various parameters o and P. Approximations will do nearly
as good.

In the completely observable case, the optimal allocation for blue troop is given by
(U1 (n), Uz (n)) = Uy (Ix(n)) = U (X{(n), X3(n), X{(n), X3(n), T1(n), Tz(n)).

When the states for targets and SAMs are not completely observable, we consider the
model

Y (n) = Xi(n) + ojwi(n)
Y5(n) = X5(n) + o5wi(n)

Then our nonlinear filtering scheme gives
(X7 X3, 71, o)
One may replace the state variables be these estimates and use
(Ut (n), Tg (n)) = UX(XE(n), X5 (n), X(n), X3 (n), Ti(n), T>(n))

to control the actual system. Such approach typically leads to close to optimal policies;
see [35].
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7 A Means of Evaluating Various Approaches to the
C? Problem

Command and Control (C?) problems in the military domain are now being addressed
via modern control techniques. More specifically, one may view the battle as a plant to be
controlled toward some goal. Obviously, the plant is an extremely large system involving
both man and machine components interacting over some changing physical space. The
level of detail and/or abstraction that commanders at various levels face is, of course,
highly variable. The choice of plant model for any such system is quite unclear. Further,
a commander faced with some plant state may have an array of controllers available, each
suggesting an action different from the others in some way (see, for instance, [6], [18],
[16], [22], [33], [34], [5], [17], [37]). The question is how to choose among such an array
of controllers. One may consider the very large space of all plants consistent with the
battle under consideration. By plants one of course means not just the variables, but also
the dynamics by which the system propagates. With this view, the question becomes:
in which region of (true) plant space should a given controller be used in preference
to another? Although this is obviously a very difficult problem, one may be able to
make some progress in a rigorous fashion. The resulting algorithms (selecting controllers
dependent on location in plant space) might best be termed a meta—controller.

Even in the most general sense, the best control formulation may not be at all clear. For
instance, one controller might choose to assign value to the elimination of enemy surface—
to—air missiles (SAMs), while another may eliminate SAMs as a means of reaching a goal
target (whose elimination may have value) at minimum risk; that is, there may not be
any term in the cost criterion corresponding to the value of a SAM. As another example,
one controller may focus solely on attrition while another may directly assign value to
geographical position of assets. The general form of the cost may be different between
controllers. For instance, one may attempt to minimize a discounted cost criterion while
another may attempt to control to some desired exit criterion. Further still, and even
more interesting, one controller may model certain stochastic elements of the dynamics
while another may focus on a deterministic game formulation.

This section will only begin to address the problem. Clearly, when military planners
consider the various approaches and the arguments of each approache’s ardent proponents,
decisions will need to be made regarding the best approach. Consequently, we consider
here an initial outline of the problem, and some potential tools. It is hoped that more
progress can be made so that the military planners can have some aids in determining
the “best” approaches.

We remark that the approach to be described here is one where the true plant is
likely quite different from the controller model since nonlinear control problems can only
be solved (even numerically) for relatively low-dimensional systems. However, one can
generate very complex computer simulations of a true system, and this has certainly been
done for military C? problems. Thus, the approach described below would be used with
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a “true” plant being generated by a very detailed computer simulation with the dynamic
models being used by the controllers being much simpler. Throughout, we will refer to
this high-fidelity simulation as the real world state; this enables one to use Monte Carlo
techniques to study the real world outcomes when appropriate.

The optimization analysis at a general level is rather simple, and appears in Subection
7.1. In Subsection 7.2, this is extended to a switching meta-controller. In Subsection
7.3, extensions to game models are discussed briefly. We consider a small example in
Subsection 7.4 to indicate that the concepts are not vacuous.

7.1 Optimization Analysis

We now display the relatively simple analysis which could be used to compare the effec-
tiveness of two controllers which may have completely different plant models with different
criteria which are being optimized.

One must have a true plant whose state is represented at time ¢ as X (¢) taking values
in some set X. The controls which the commander could use in this true plant (again
actually a high fidelity simulation of the real world) are denoted as u™(t). There must
exist some dynamics for this true plant. Rather than specify particular dynamics, we will
attempt to keep the discussion rather general, allowing a variety of dynamic models such
as deterministic models

dXv w w
- = (X0 (0),u(0) (7
and
X (tgr1) = f e, X (te), u” (tr)) (8)

where in the latter case, we will assume the state is defined over continuous time as
Xv(t) = X"(ty,) for all t € (tx_1,tx]. We will assume that there exist unique solutions for
all feedback controls u*(-) to be supplied by the control algorithms. We will also allow
stochastic analogues of these dynamics such as

dXY = f(t, X" (t), u”(t)) dt + o(t, X"(t)) dB, 9)

and
XY(tes1) = X (te) + f (tr, XV (tk), u® (tr)) + o (t, X ()W (tg). (10)

Here, B. would be a vector-valued Brownian motion, and W (-) would be a vector-valued
random sequence. Again, we assume that all conditions for existence and uniqueness of
solutions hold for any controls, u*, generated by the control algorithms. (For instance, in
the diffusion case, we presume the control designers restrict themselves to progressively
measurable controls, but this will not be the main focus of this paper, so we ignore the
details for now.) Again, this paper will only attempt to lay out a problem that has
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appeared in the C? area in a general way, and so we minimize discussion of the associated
mathematical machinery.

Now, if one is going to apply a control algorithm, say algorithm %, one must have a
model of the true plant with which the controller will be computed. Let the state (at time
t) in this model for control algorithm 7 be denoted by X*(¢), taking values in X*. Then,
in order to compute the corresponding control, one must specify a mapping from the real
world state to the model state. That is, the control designer must specify a well-defined
mapping

M XY — X° (11)
Thus, given plant trajectory X" ([ty,t]) (where t, will denote the initial time), the control
at time ¢ will be designed on the basis of X*([tg,t]). Then, via some algorithm (algorithm
i in this case), the controller will compute the control to be applied at time ¢, u*(t) with
u'(t) € U°, or possibly L[ﬁ(i(t) in the state-dependent control set case. Note that one may
have u'(t) = F'(X'(t)) or possibly, u'(t) = F*(X*([ty,t])) if the control depends on the
entire trajectory rather than just the current state. (For now, we do not specifically
denote an observation process.)

Next, to actually apply the controls back in the real world, the designer must also
specify some mapping from U (or Z/{)i(i(t)) into UY (or Z/I“’w(t) in the state-dependent control
set case). That is, the designer must specify

N : U —U" (12)

or in the state-dependent control set case,
Nxwpy + Uxigy = Uxwy (13)

where the subscript on V is necessary since the specification of the mapping must be such
that the range is restricted to Uy ,. Thus, (in the case of state-dependent control set)

uf (1) = Niw(y o F' o MY (X™(t)) (14)

)

if the controller only depends on the current state, and

u () = Nxugy o F* o {M'[X"(r)]([to, t])} (15)

)

otherwise (where r is a dummy variable).

We will assume throughout that the commander may supply an exit set, £“, and
certainly will supply an exit time

7% = min {7, inf{t : X"(t) € E}},

where T' < oo (and obviously 7 = T if no exit set is specified). In the simplest sit-
uation, the commander or planner may have a very specific cost criterion in mind, say
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LY (X" ([to, 7], u™([to, 7*]) which they may wish to minimize. For example, let us sup-
pose that the dynamics of the real world are stochastic, and further, let us suppose that
one wishes to minimize a criterion such as

£w(t07x8)v"4i) = E{Lw(Xw([tﬂaTw]vuw([tOva])}

with X% (tg) = 2% where A’ represents the triple A* = (M’ F, N*). Then the problem
is simple. For instance, suppose one only needs to compare two control algorithms, A'
and A?. The problem is reduced to merely comparing £¥(t, z¥, A") and L% (tg, ¥, A?)
at the initial time to see which yields the minimum expected payoff. (Note that there
is actually a time-dependent generalization to this where one may use such a criterion
as a switching criterion in a meta-controller. Some initial development in this direction
appears in the next section.) One might remark that the minimizing control algorithm
might vary depending on the initial state.

Unfortunately, the criterion which should be minimized may not be obvious. The
problem under consideration may be only a small part of an overall conflict, and the
criterion may be quite loosely defined, as mentioned in the introduction. At the early
stages of an examination of this overall problem of applying control in a C? environment,
the military will not give a specific criterion to be minimized. Further, the plants to be
studied may be quite variable — encompassing a wide variety of military scenarios. The
control designers themselves must propose criteria which the controllers will minimize
(based, of course, on communication with operational experts). Note that 7 may not
correspond to the exit time for the control models. It is required that each controller have
some cost criterion which it is attempting to minimize. Let the cost be L'(X*(-), u'(+)).
This cost must be well-defined for all possible paths X(-). In particular, if there is an exit
set £ and exit/terminal time 7°, then L' must be defined for paths such that 7% < 7°.
Alternatively, if X* enters £ at some time t* < 7, then the controller must define some
“zero control”, u} to be applied while X*(¢) € £°. Lastly, we will assume that the range of
L', R(L"), to satisfy R(L') C [0,1]. (Note that there are a variety of simple mappings to
achieve this range condition if it is not natural.) We note that one would typically expect
LY(X*(+),u’(-)) = 0 to indicate an outcome with no Blue losses and total rout of Red
forces, and vice-versa for L'(X*(+),u’(-)) = 1, so a fixed range condition is quite natural
in the context of a C? problem.

Now we return to the commander’s predicament in the absence of an L". Let X(-) :
[0,7%] — X be the path generated by control algorithm A’ i.e. by applying control
u¥ given by (14),(15) for all ¢ € [0,7%]. Also suppose that [N]~' exists (and assume
that N* is not state-dependent). Then define the cost of considering control algorithm 47
according to the cost metric supplied by controller i denoted (in the deterministic case)
as follows (where we drop the ¢y, 2§ arguments for simplicity)

LIA) = LM (), IV () ()] (16)

where
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MUXF () =M (X} (1) Yie[o,r] (17)
VT @y ()@ = [N (wf () VEelo,r].

Note that if the real world dynamics are random, with some underlying probability space
(Q, Fi, P), then one actually has X(-) = [X}(-)](w) where w € ©, and one should modify
(16) to

LH(A) = B{LIM(X) (), VT (s ()]} (18)
in which case, L(A’) is the exzpected cost of considering control algorithm A7 according

to the cost metric supplied by controller . We remind the reader that this may depend
on the initial state X (ty) = .

Now, one would typically expect
LIA) < LY(A) (19)
LI(AT) < L7(AY (20)
(although this can certainly be violated since the true dynamics do not necessarily corre-
spond to those assumed by the controllers).

Let us suppose (19),(20) hold. Even in this situation, a commander (with no a priori
preferences) could still construct an objective criterion for choosing between two control
algorithms, A' and A%2. One obvious approach is to consider

EI(AI) and £2(.A2)
LI(AQ) £2(A1)

(21)
To eliminate technicalities, let us assume that all four of these costs in the ratios are

nonzero. Then, if (19), (20) hold,

,CI(AI) EQ(AZ)
L1(A2)" L2(AY)

€ (0,1].

Then one can simply compute

- ,CI(AI) B EQ(AZ)

T o) T Al
and one would choose A' if d;» < 0 and vice-versa (with no preference if d;5 = 0 of
course).

However, if the number of controllers exceeds two, one can show that there may not
be an optimal choice by this approach. That is, following the above procedure in the case
of three controllers, one may construct a situation where d; 2 < 0, da3 <0, and ds; < 0.
Thus, this procedure is not useful.

On the other hand, in general, one can form a single criterion by which to judge the
controllers from the set of criteria provided by the control designers, and can then evaluate
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each control algorithm according to this combination criterion. Two obvious combination
criteria are (in the case of N controllers) as follows.

Har (A1) = mass, £9(A) = mas E{LIMI(XF (), V7 @ ()],

1<j<N
(where expectation is included in case the system is stochastic) and
N N
Haum (A") = 3 L(A) =3 B{L[MP(X7()), V7] (i ()]}
j=1 j=1

The optimal control algorithms for these two combination criteria are obviously given by

Aaw = argmin Homae (A" and Ay, = argmin Hsum (AY).

Note that if the ranges of the L! are very different, one may choose to first re-scale the
range by L/ (to,zf, A") = LI (to, xf, A")/[maxge { L (to, zf, A7)}] so as to normalize the
payoffs.

7.2 Switching Meta—Controller

One may adapt the above optimization over control algorithms approach in order to
develop a switching meta-controller. A few more definitions will be required.

In the previous section, a fixed control algorithm was chosen at the initial time, t;,
and this remained fixed until 7%. Now we will allow the choice of control algorithm to
switch as time moves forward. Let M* M' F' u', N\, N* u¥?, X* be defined as before.
Since this paper is introductory in nature, let us suppose that the (possible) switching
times are prespecified as {t;}_, with 3,1 = tx + A; for & > 0 and ¢, still being the
initial time. Also, let K > T'//A; where we recall 7% < T regardless of control choice (and
sample path in the stochastic case). In the case of the discrete-time dynamics of (8), (10),
we suppose the times t; coincide with the time-steps given in the dynamics.

Let us again first consider the case where the commander or planner has a specified
cost criterion in mind. This would take the form L“(X™([to, 7*]), u® ([to, 7"]). We now
modify this by fixing any t; < 7%, and letting the cost accrued up to time ¢ (i.e. over
[to, tx) ) be denoted by

L (X([to, 1), u”([to, 7]) = Ly (X ([to, te A T")), u" ([to, te A T™))),
and the remaining cost to go over [t, 7] be denoted by
Ly, (X ([to, ), u” ([to, 1) = Loy (X ([t, 7°]), u® ([tr, 7°1))

where Ly (X" ([ty, 7)), u”([ty, 7]) = 0if ty > 7. Let K = sup{k < N : t; < 7"}. Let
Iy = [tg,try1) if £ < K and I = [tg, 7"]. Also, (assuming ¢, < 7%) let the cost accrued
over time interval I, be denoted by

Ly (X ([to, 70), u* (to, 1) = L (X" (L), u® (1)
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where to be more specific, this will be the cost over [tg, txy1) if tx11 < 7% and over [ty, 7]
otherwise. We assume

L (X (ot A 7)), 0 (o, b A 7)) + T (X ([t 71), u® (. 7]
— L (X (o, 1), u” (o, ™) (A1)
for all k. Then, by (A1),
L2 (X" (o, 1), u (fto, ™]) = {Z Ez:<xwuk>,uwuk>>}.

k=0
Let

ig € argminzw(to,x}f,fli) = argminE{f?;(X“’([tO,Tw]),uw([tO,T“’]))}.

Suppose the control algorithm so chosen at time ¢, is denoted by A% with resulting control
ui’. We define u" over the time interval [to, 1y AT") as @ ([to, Ly ATY)) = ul ([to, L1 ATY)).
Similarly, the resulting trajectory is X ([to,t1 AT%)). For each j and t € [ty t; A "), one

may then obtain the image of this trajectory under controller j’s map, M7, as X’ (t) =
MI(X(t)).
Although, the goal here is to lay out some general beginnings for the theory, in order

to be more clear let us presume here that we have a stochastic system (as, for instance,
given by (9)). We assume

X" (t) = liTrtnyw(s) Vk>0, a.s.
st

Denote the control algorithm chosen for this first time interval as Aj, = A®. Then,
using (A2), A;, defines X over [to,t; A 7%], and let us suppose 7% > t;. Then, for time
interval I, we may define, for each controller i, u’(t) = F' o M*[X®(¢)] and so feedback
u (t) = Niw o F'o M[X(t)] for all t € I, where X?(t;) = X (t;). Let

(To)ux([t1,1))
iy € argmin B, <, {Ly (X ([to, 71), uf’ ([to, 71)) }

where the subscripts on the expectation indicate that it is conditioned on the state at

time ¢;. Then let
—w,, [ XP(t) ifte I,
X0 = {X;%(t) ittel
(1) = {
Ao(t) ift € I,

AIoUh = {Azl (t) ifte [1.

and
U%(t) ift e ]0,

i1

Lastly, let
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Proceeding inductively, one obtains the switching meta-controller, A, over the entire
period. We denote the cost as L* (g, z§, A) or simply £ (A).

The following theorem is straightforward to prove.
Theorem 7.1 L¥(A) < LY(AY) for alli € {1,2,...,N}.

PROOF.
LY(A) = By ap{ Lt (X" (I UL UL UTx ), 0" (I UL U ... U I _y))
+ min By g0 { T (X0 (T), ult (Tk))

1<ig <N

= Ero,uy {Z Ly (X (1), u" (1))

+ m1n Et bl {L (X Uk),u ZK(IK))}}

< Bty af {Z Ly (X"(1), " (1))

vt o Lt (X8 (Tt (Irc))
+LE, (X3 (Txe), uih (Txc)) }

< Eyy g {Z Ly (X"(1), " (1))

+ min EtK,I,Y’”(tK,I){Z:)K,I(Xiﬁfl(lf( 1UIK), ;UK I(IK—IUIK))}}a

1<ig—1<N

+ min min F,
1<ig 1<N 1<ig<N (K- 1, X

and continuing this process
< min Fy, i { T (X0 (0, 7).ty ([f0, 7)) }

1<ip<N

< LY(AY). g

In the (more likely) case where the commander or planner does not have an a priori
choice for L, one can proceed similarly, but with the modification induced by using the
combination criteria (such as Hy,,,) in place of L™ as described at the end of the previous
section. We do not include the details of the trivial modifications. Also, one obvious
extension of this would be to allow control algorithm switching at any time; this will not
be pursued here, but left for later papers/researchers.

7.3 Game Models

In the above analysis, the models were restricted to deterministic and stochastic dynam-
ics. In the C? arena, game models are also certainly appropriate, and so we make a few
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comments in this section. The techniques described above may be modified in obvious
ways to deal with such models. Although, one could consider both deterministic and
stochastic games, as well as continuous time/space and discrete time/space models, let us
restrict the discussion here say, a simple continuous time/space deterministic real-world
dynamics model. We suppose there is an antagonistic player in the real-world attempting
to maximize the criterion the controller or planner is trying to minimize. (Similar models
might be used as the control algorithms.) For instance, suppose the dynamics are

dXV
dt — f(t7 Xw7uw7vw)
X"(tg) = g

where «" remains our control, but now the dynamics are affected by the controls of
the antagonistic player denoted by v*. Suppose for instance, that one has restrictions
in the real-world of u¥ € UM+ = {u® € Clty,00) : |[u®(t)] < M, Vt € [tg,00)} and
¥ e YMv = fyv € Clty,00) @ |v*(t)| < M, Vt € [ty,00)}. Assume that f is sufficiently
well-behaved to guarantee existence and uniqueness for all controls in U+ and Vv for
all t € [ty, 00) (or at least for all t € [ty, 7%]).

A standard cost criterion might take the form

w

£t A = sy | [P X)) 07(6) ds 4 (X))

vw ey Moy

Analyses similar to those of the previous sections yield optimal meta-controllers and
switching meta-controllers. We will not pursue this further.

7.4 Example

The purpose of this section is to indicate that the concept of a meta—controller based
on choosing among a possible set of controllers is not entirely vacuous. We will use an
example to indicate this. Again, since this paper is only intended to introduce the area
as a possible field of study, the example will be rather simple. However, we will allow the
models to vary quite significantly from the original system, so that nontrivial behaviors
will be manifest. In a real world system, it would be expected that the system models
used by the controllers would be tied down somewhat by the realities of the true system.

Consider a simple discrete-time stochastic real-world model given as follows. Let
x* =1{0,1,2,3}. Let the dynamics be

X (te), w (), W™ ()

Xty = 4= X)) £ W (0) PO () 0”(1), W (1)) € X7,
#1073 i (X (1), u (1), W (1)) < 0,
3 i (X (1), ' (t), W (1)) > 3,
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where u” € {0,—1,—2} and W" is a time-uncorrelated random process with P(W™" (t;) =
1) =1/2 and P(W*™(tx) = 0) = 1/2. (We set tx11 — tx, = 1.) We will not suppose an exit
set for the commander, but a fixed exit time of 7" = 20.

Let there be three control algorithms where X! = X2 = X3 = X%, and let M" be the

identity for all i. Also let U' = U? = U? = U™ with N? the identity as well. Suppose
however that the dynamics for the three models are

(FHX (), w! (t), W (Ek))
Xl(t ) . :Xl(tk) —|—2U,1(tk) —|—W1(tk) if fl(Xl(tk),Ul(tk),Wl(tk)) € Xw,
k+1) — 0 if fl(Xl(tk), Ul(tk), Wl(tk)) < 0,
(3 if fHXC (), ut (), WH(ER)) > 3,
(F2XP (), w?(th), W2 (L))
X2(t ) . { = XQ(tk) + U2(tk) + 2W2(tk) if fQ(XQ(tk), U2(tk), WQ(tk)) & Xw,
T 0 if f2(X2(t), u?(te), W2(tg)) < 0,
L 3 if fZ(XZ(tk),u2(tk),W2(tk)) > 3,
X (), u (), WP (t))
X3(t ) o :XS(tk) +U3(tk) —|—W3(tk) if f3(X3(tk),u3(tk),W3(tk)) e Xv,
T 0 if f3(X3(t), u(te), W3(tg)) < 0,
3 if £ (), w? (), W2 (1)) > 3,

with the probabilities for W, W2 and W3 being identical to those for W®.

Suppose the commander or planner does not have an a priori cost criterion. Let the
criteria proposed by the controllers be

v =5 {3 (5) 1w + sl
> (3) (020 + 1o}

I’=F {
L*=E {\I/(X3(T3)) + 23: 8|u3(tk)|}

where in the last cost criterion, the exit set is {0,3} with ¥(0) = 0 and ¥(3) = 16, 72 is
the corresponding exit time, and K3 is the last index prior to exit.

The corresponding dynamic programming equations are as follows. For the first con-
troller, it is

1
V(z) = 2 + min{3Jul + 5E[vl(fl(gc,u,w))]} Ve {0,1,2,3}.
Similarly, for the second controller it is

V(@) = 22 + min{ u| + %E[VQ(fQ(x,u,w))]} Ve {0,1,2,3).
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For the third controller, one automatically has V3(0) = 0 and V3(3) = 16. For the
remaining states, the dynamic programming equation is

V3(x) =2 + min{8|ul + EV3(f3 (2, u,w))]}  Vae{1,2}.

Solving the dynamic programming equations for the first control model, one finds that
the value function and optimal feedback control are

Vi0)=5/3, VY(1)=5 VY2 =11, V'(3)=18

and
F'(0)=0, F'(1)=0, F'(2)=-1, F'(3)=0.

Proceeding similarly for the second control model, one obtains the value
V20)=3, V2*(1)=5, V?*2)=9, V?*3)=49/3.
In this case, there are multiple optimal feedback controls; we will choose
F?(0) =0, F?(1)=-1, F?(2)=-2, F?*3)=-2.
Lastly, for the third control model, one finds
V30)=0, V*1)=16, V32)=16, V?3(3)=16.

Note that the controls are not well-defined for the exit state (where we recall the true
exit time may differ from the controllers), and so we will arbitrarily choose controls for
the points in the exit set. We obtain the feedback control

F?(0)=—1, F*(1)=-1, F*(2)=0, F*3)=0.

Note that the above value functions are not necessarily identical to £'(ty, 2%, A") since
the dynamics used in propagating the true state may differ from that in the models. Also,
note that the dynamics and criteria were time-independent in this problem.

Once one has determined the feedback controllers (and given that M® and N* are iden-
tities), it is easy to determine the associated costs via dynamic programming equations.
We present the results in tabular form.

2y LAY [C1(A%) [CH(A%) [C2(AY) [C2(A%) [C2(A%) [C3(AY) [C3(A%) [C3(A%)
0 1.667 2 6 0.5 1 2 0 0 0
15 6 7.333 1.5 3 3.333 |76 16 16
2 11 12 11.333 [7.167 |7 11.333 84 24 16
3 118 19.5 18 18 13.5 18 16 16 16
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Using these results, one is able to compute d; 2, d; 3 and dy3 as discussed in Section
7.1. Using d; » yields a preference of A' over A? if z§ = 0,1,2, and vice-versa for the
other state. Using d; 3 yields a preference of A' over A* if 2 = 0, vice-versa for 2§y = 2,3,
and no preference for x§ = 3. Using do 3 yields a preference of A? over A? everywhere.
Comparing these three sets of results, one sees that A' is the preference if z¥ = 0, and
that A? is the preference if z¢¥ = 3. However, when ¥ = 1,2, one sees that these pairwise
preferences do not lead to any single overall preference among the three.

We now proceed to compute the combination criteria Hg,,, and H,,qe-

()w Hsum (Al) Hsum (A2) Hsum (A3) Hmam (Al) Hmaz (AQ) Hmam (A3)
0 2.167 3 8 1.667 2 6

1 84 25 26.667 76 16 16

2 102.167 43 38.667 84 24 16

3 52 49 52 18 19.5 18

Using combination criterion H,,, in the controller optimization method of Section 7.1
leads to a choice of A if 2y =0, A% if af =1, A% if 2§y = 2, and A? if z§ = 3.

We also note that the above choices could be used in a feedback form to yield a
switching meta-controller as described in Section 7.2. Noting that the choice at each
switching time depends only on the remaining cost to come, one sees that one needs to
compute also H,m over controllers 1 and 2 for ¢t > 72; to avoid confusion, let us denote

this as %12, This is given by
w5 | (A | Mo (A?) | H (A7)
0 | 2.167 3 8
1| 6.5 9 10.667
2 | 185 19 22.667
3 | 36 33 36

The resulting switching meta-control is identical to the optimized control choice above
for t+ < 73, that is one chooses A! if 2% = 0, A? if 2% = 1, A if 2¥ = 2, and A% if 2% = 3.
In other words, one obtains the real world feedback given by u*(0) = 0, @*(1) = —1,
u*(2) = 0, and w¥(3) = —2. For t > 73, one obtains A" if 2¥ = 0, A" if 2¥ =1, A" if
¥ = 2, and A? if 2 = 3. In other words, one obtains the real world feedback given by
u”(0) =0, uw”(1) =0, u”(2) = —1, and w*(3) = —2 after 3. It is not difficult to check
that the switching controller satisfies the statement of Theorem 7.1.
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One can also obtain the optimized and switching controllers for H,,.,;. These differ
from those for Hgym only at 2 = 3. Specifically, the optimized controller choice and the
switching controller (for all ¢) have ©*”(3) = 0.
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